# **CMB lensing overview**

Kendrick Smith Berkeley, 21 April 2011 1. CMB lensing: general picture

2. Non-Gaussian statistics

3. B-modes

4. Cosmological information from lensing

### **CMB fields**



Temperature field  $\Delta T(\mathbf{n})$ 

In Fourier space:

 $T(\mathbf{l}) = \int d^2 \mathbf{n} \ T(\mathbf{n}) e^{i\mathbf{l}\cdot\mathbf{n}}$ 

Polarization fields  $Q(\mathbf{n})$ ,  $U(\mathbf{n})$ E-B decomposition:

 $\begin{pmatrix} E(\mathbf{l}) \\ B(\mathbf{l}) \end{pmatrix} = \begin{pmatrix} \cos(2\varphi_l) & \sin(2\varphi_l) \\ -\sin(2\varphi_l) & \cos(2\varphi_l) \end{pmatrix} \begin{pmatrix} Q(\mathbf{l}) \\ U(\mathbf{l}) \end{pmatrix}$ 



E-mode ("gradient-like")



**B-mode** ("curl-like")

# **Unlensed CMB: power spectra**



Two-point function in Fourier space:  $\langle T(\mathbf{l})T(\mathbf{l'})^* \rangle = C_l^{TT} \delta^2 (\mathbf{l} - \mathbf{l'})$ 

If the CMB is a Gaussian field, then power spectrum contains all the information in the original map ("sufficient statistic")

# Lensed CMB: general picture



Apparent anisotropy in direction  $\hat{\mathbf{n}}$ = unlensed anisotropy in direction  $\hat{\mathbf{n}}'$ 

Moves existing temperature fluctuations around; does not generate new anisotropy (conserves surface brightness)

# Lensed CMB: general picture

#### More formally: can define vector field $d(\hat{n})$ ; lensed CMB is given by:

 $\Delta T(\mathbf{n})_{\text{lensed}} = \Delta T(\mathbf{n} + \mathbf{d}(\mathbf{n}))_{\text{unlensed}}$  $(Q \pm iU)(\mathbf{n})_{\text{lensed}} = (Q \pm iU)(\mathbf{n} + \mathbf{d}(\mathbf{n}))_{\text{unlensed}}$ 





deflection field  $\mathbf{d}(\mathbf{\hat{n}})$ 

unlensed CMB lensed (observed) CMB

# Lensed CMB: line-of-sight integral



# Lensed CMB: line-of-sight integral





Deflection field is a pure gradient (no curl component)

Thursday, April 21, 2011

### **Deflection field**

$$\mathbf{d}(\mathbf{\hat{n}}) = -2 \int d\chi \left( rac{\chi_{
m rec} - \chi}{\chi_{
m rec}} 
ight) 
abla_{\!\!\perp} \Psi(\chi \mathbf{\hat{n}}, \chi)$$



Line-of-sight integral is broadly peaked at  $z \approx 2$ .

Angular power spectrum of deflection field  $\mathbf{d}(\mathbf{\hat{n}})$  is broadly peaked at  $\ell \approx 40$ .

RMS deflection: 2.5 arcmin

"Few-arcminute deflections, coherent on ~2 deg scales, sourced by large-scale structure at redshift ~2"

#### Unlensed vs lensed CMB



#### Unlensed vs lensed CMB







Lensing converts primary E-mode to mixture of E and B => largest guaranteed source of B-mode polarization

### Lensed TT spectrum: observations

Current TT power spectrum measurements prefer a lensed spectrum to an unlensed spectrum at few-sigma level

#### WMAP+ACT: $2.8\sigma$ (Das et al 2010)

WMAP+ACBAR +QUAD+SPT:  $3.4\sigma$ (Shirokoff et al 2010)



**Das et al 2010** 

1. CMB lensing: general picture

2. Non-Gaussian statistics

3. B-modes

4. Cosmological information from lensing

#### Lensed CMB: non-Gaussian statistics

Taylor-expand lensed CMB in powers of deflection field:

$$T(\mathbf{n})_{\text{lensed}} = T(\mathbf{n} + \mathbf{d}(\mathbf{n}))_{\text{unl}}$$
  
=  $T(\mathbf{n})_{\text{unl}} + d_i(\mathbf{n})\nabla_i T(\mathbf{n})_{\text{unl}}$   
 $+ \frac{1}{2}d_i(\mathbf{n})d_j(\mathbf{n})\nabla_i \nabla_j T(\mathbf{n})_{\text{unl}} + \cdots$ 

All terms beyond the first are non-Gaussian

=> statistics not fully determined by power spectrum

Next part of talk: describe higher-point statistics which complement the power spectrum and extract characteristic non-Gaussianity generated by gravitational lensing

#### Lens reconstruction: idea



Idea: from observed CMB, reconstruct deflection angles (Hu 2001)



Lensed CMB

Reconstruction + noise

#### Quadratic estimator

In a fixed lens, Fourier modes with  $\mathbf{l} \neq \mathbf{l}'$  are weakly correlated:  $\langle T(\mathbf{l})T(\mathbf{l}')^* \rangle = iC_l[\mathbf{l} \cdot \mathbf{d}(\mathbf{l} - \mathbf{l}')] + [\mathbf{l} \leftrightarrow \mathbf{l}']^*$ 

Formally: can define estimator  $\widehat{d}(l)$  which is quadratic in temperature

$$\widehat{\mathbf{d}}(\mathbf{l}) \propto \int \frac{d^2 \mathbf{l}_1}{(2\pi)^2} [\mathbf{l}_1 C_{\ell_1} + \mathbf{l}_2 C_{\ell_2}] \frac{T(\mathbf{l}_1) T(\mathbf{l}_2)}{(C_{\ell_1} + N_{\ell_1})(C_{\ell_2} + N_{\ell_2})}$$



Lensed CMB

Reconstruction + noise

### **Example: Planck forecasts**



Signal/noise power spectra (temperature)

Signal/noise power spectra (lens reconstruction)

# **Higher-point statistics**

Lens reconstruction naturally leads to higher-point statistics:

e.g. start with observed CMB temperature  $T(\mathbf{n})$ 

- $\Rightarrow$  apply quadratic estimator  $\widehat{\mathbf{d}}(\mathbf{l})$
- => estimate deflection power spectrum  $C_l^{dd}$

Estimator for  $C_l^{dd}$  is a 4-point estimator in the CMB



or: start with CMB temperature  $T(\mathbf{n})$  and galaxy counts  $g(\mathbf{n})$ 

- $\Rightarrow$  apply quadratic estimator  $\mathbf{d}(\mathbf{l})$
- => estimate deflection power spectrum  $C_l^{dg}$

Estimator for  $C_l^{dg}$  is a (2+1)-point estimator in (T,g)

Can think of the lensing signal formally as a contribution to the 3-point or 4-point function, but lens reconstruction is more intuitive



# NVSS: NRAO VLA Sky Survey



Mostly extragalactic sources: AGN-powered radio galaxies Quasars Star-forming galaxies 1.4 GHz source catalog,50% complete at 2.5 mJy



Well-suited for cross-correlating to WMAP lens reconstruction: Nearly full sky coverage  $(f_{sky} = 0.8)$ Low shot noise  $(b_g = 2, N_{gal} = 1.8 \times 10^6)$ High redshift  $(z_{median} = 2)$ 

#### **WMAP-NVSS** analysis

First detection (3.4 $\sigma$ ) of CMB lensing, via 3-point signal ( $C_l^{dg}$ )



Smith, Zahn, Dore & Nolta 2007 (see also Hirata et al 2008)

|                             |               | Beam      |             |           | Galactic  |           |           | Point source $+$ SZ |           |            |                   |
|-----------------------------|---------------|-----------|-------------|-----------|-----------|-----------|-----------|---------------------|-----------|------------|-------------------|
| $(\ell_{\min},\ell_{\max})$ | Statistical   | Asymmetry | Uncertainty | Total     | Dust      | Free-free | Total     | Unresolved          | Resolved  | Total      | Stat + systematic |
| (2, 20)                     | $17.4\pm22.4$ | $\pm 0.9$ | $\pm 0.3$   | $\pm 1.2$ | $\pm 0.4$ | $\pm 1.4$ | $\pm 3.6$ | $\pm 10.9$          | $\pm 0.5$ | $\pm 11.4$ | $17.4\pm27.4$     |
| (20, 40)                    | $33.2\pm10.5$ | $\pm 0.2$ | $\pm 0.1$   | $\pm 0.3$ | $\pm 0.2$ | $\pm 0.5$ | $\pm 1.4$ | $\pm 4.9$           | $\pm 1.0$ | $\pm 5.9$  | $33.2\pm13.0$     |
| (40, 60)                    | $15.9\pm7.8$  | $\pm 0.1$ | $\pm 0.1$   | $\pm 0.2$ | $\pm 0.2$ | $\pm 0.3$ | $\pm 1.0$ | $\pm 2.8$           | $\pm 1.5$ | $\pm 4.3$  | $15.9\pm9.3$      |
| (60, 80)                    | $10.1\pm6.3$  | $\pm 0.1$ | $\pm 0.1$   | $\pm 0.2$ | $\pm 0.1$ | $\pm 0.3$ | $\pm 0.8$ | $\pm 2.0$           | $\pm 0.3$ | $\pm 2.3$  | $10.1\pm7.0$      |
| (80,100)                    | $5.1\pm5.8$   | $\pm 0.1$ | $\pm 0.1$   | $\pm 0.2$ | $\pm 0.1$ | $\pm 0.3$ | $\pm 0.8$ | $\pm 1.1$           | $\pm 0.2$ | $\pm 1.3$  | $5.1\pm 6.0$      |
| (100, 130)                  | $8.3\pm4.3$   | $\pm 0.1$ | < 0.1       | $\pm 0.2$ | $\pm 0.1$ | $\pm 0.2$ | $\pm 0.6$ | $\pm 0.6$           | $\pm 0.2$ | $\pm 0.8$  | $8.3\pm4.4$       |
| (130, 200)                  | $1.6\pm2.5$   | < 0.1     | < 0.1       | $\pm 0.1$ | $\pm 0.1$ | $\pm 0.1$ | $\pm 0.4$ | $\pm 0.3$           | $\pm 0.1$ | $\pm 0.4$  | $1.6\pm2.6$       |
| (200, 300)                  | $-1.9\pm2.2$  | < 0.1     | < 0.1       | $\pm 0.1$ | $\pm 0.1$ | $\pm 0.1$ | $\pm 0.4$ | $\pm 0.3$           | $\pm 0.1$ | $\pm 0.4$  | $-1.9\pm2.3$      |

Thursday, April 21, 2011

## **ACT deflection power spectrum**

First clear detection (4 $\sigma$ ) of 4-point lensing signal ( $C_{\ell}^{dd}$ )





#### **Planck forecast**



Cumulative detection significance = 27 sigma!

We are entering the era of precision measurements of CMB lensing High-resolution CMB experiments "contain" lensing experiments

Thursday, April 21, 2011

#### Unlensed vs lensed CMB



#### Unlensed vs lensed CMB

![](_page_24_Figure_1.jpeg)

1. CMB lensing: general picture

2. Non-Gaussian statistics

3. B-modes

4. Cosmological information from lensing

# **B-mode power spectrum**

General symmetry argument implies: B-modes are only generated by non-scalar sources (e.g. GW background from inflation) OR nonlinear evolution

Gravitational lensing (nonlinear effect) is largest guaranteed B-mode Lensing converts primary E-mode to mixture of E and B

![](_page_26_Figure_3.jpeg)

# **B-modes as probe of inflation**

Qualitative distinction between models with detectable r and undetectably small r.

E.g. in single-field inflation with standard kinetic term

$$S = \int d^4x \, \sqrt{-g} \left( \frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right)$$

models with detectable gravity waves are models in which:

Energy scale of inflation is GUT-scale:  $\rho^{1/4} = (3.35 \times 10^{16} \text{ GeV}) r^{1/4}$ 

Change in inflaton field per e-folding is Planck scale:  $d\phi/d(\log a) = (0.354 M_{\rm Pl}) r^{1/2}$ 

# **B-mode power spectrum: low l**

Lensing looks like white noise with  $(\Delta_P)_{\text{lensing}} = 5 \ \mu\text{K-arcmin}$ Combines with instrumental noise:

$$(\Delta_P)_{\text{eff}} = \left[ (\Delta_P)^2_{\text{lensing}} + (\Delta_P)^2_{\text{instr}} \right]^{1/2}$$

 $(\Delta_P)_{\text{instr}} \gtrsim 5 \ \mu \text{K-arcmin}$  $10^{-1}$  $\Rightarrow$  gravity wave noise ( $\Delta_P = 10 \ \mu \text{K-arcmin}$ ) lensing + (GW, r=0.01) measurement is  $10^{-2}$  $\ell(\ell + 1)C_{\ell}^{BB}/(2\pi)$ lensing alone noise-limited  $(\Delta_P)_{\text{instr}} \lesssim 5 \ \mu \text{K-arcmin}$  $\Rightarrow$  gravity wave  $10^{-5}$ measurement is lensing-limited  $10^{-6}$ **10**<sup>1</sup> Ì

 $10^{2}$ 

# Foregrounds and "r"

Forecasts on r are very sensitive to assumptions about foregrounds! e.g. consider simple mode-counting forecast,

$$\sigma(r) = \left[\frac{f_{\rm sky}}{2} \sum_{\ell} (2\ell+1) \left(\frac{\partial C_{\ell}^{BB} / \partial r}{C_{\ell}^{BB} + N_{\ell}^{BB}}\right)^2\right]^{-1/2}$$

![](_page_29_Figure_3.jpeg)

Reionization bump has 10 times more S/N than the recombination bump

B-mode quadrupole has same S/N as all  $\ell \geq 3$  modes combined

We will avoid quoting values for  $\sigma(r)$ , will instead quote foreground-independent quantities (e.g. ratio between two values of  $\sigma(r)$  with same foreground assumptions)

Thursday, April 21, 2011

#### Lens reconstruction: polarization

Quadratic estimators are defined for all pairs (TT, TE, TB, EE, EB) but EB estimator dominates in low-noise limit:

$$\widehat{\mathbf{d}}(\mathbf{l}) \propto \int \frac{d^2 \mathbf{l}'}{(2\pi)^2} i \mathbf{l}' \sin[2(\varphi_{l'} - \varphi_{l-l'})] \frac{E(\mathbf{l}')B(\mathbf{l} - \mathbf{l}')}{(C_{\ell'}^{EE} + N_{\ell'}^{EE})(C_{l-l'}^{BB} + N_{l-l'}^{BB})}$$

![](_page_30_Figure_3.jpeg)

#### Lens reconstruction: polarization

![](_page_31_Figure_1.jpeg)

CMB polarization can ultimately provide a much more sensitive probe of lensing than temperature, especially on small angular scales

Increased statistical power since B-mode is all lensing

# Delensing: idea

Estimate unlensed CMB, by combining observed (lensed) CMB with statistical reconstruction of lens

![](_page_32_Figure_2.jpeg)

Delensed CMB has smaller lensed B-mode than original lensed CMB => error on r is improved (if lensing-limited)

B-modes on small scales are used to "clean" the large scales

# **Delensing: improvement on r**

For instrumental noise significantly better than 5  $\mu$ K-arcmin, delensing with a few-arcmin beam allows one to beat the noise floor from lensing

![](_page_33_Figure_2.jpeg)

Smith, Hanson, LoVerde, Hirata & Zahn (2010)

# **Delensing using temperature?**

No-go result: cannot use CMB temperature to delens polarization

CV-limited temperature ( $\ell \leq \ell_{\max}^T$ ) + noisy E-mode measurement

![](_page_34_Figure_3.jpeg)

# **Delensing with large-scale structure?**

No-go result: cannot use large-scale structure to delens the CMB Ideal LSS measurement ( $z \le z_{max}$ )+ noisy E-mode measurement

![](_page_35_Figure_2.jpeg)

Smith, Hanson, LoVerde, Hirata & Zahn (2010)

# **B-modes from patchy reionization**

Reionization bubbles generate B-modes via scattering (dominates at low l) via screening (dominates at high l)

(a) Ē=5Mpc  $10^{-1}$ 10-4  $(\mu K)^2$ 10 10 10 24 10 10 10 10 10 (b) R=30Mpc 10  $10^{-2}$ 10 10 10 100 1000 10000

Dvorkin, Hu & Smith 0902.4413

Can construct quadratic estimator to reconstruct bubbles (analogous to lens reconstruction, with deflection field  $\mathbf{d}(\mathbf{n})$  replaced by optical depth anisotropy  $\Delta \tau(\mathbf{n})$ )

![](_page_36_Figure_5.jpeg)

**Dvorkin & Smith, 0812.1566** 

1. CMB lensing: general picture

2. Non-Gaussian statistics

3. B-modes

4. Cosmological information from lensing

# **Unlensed CMB: distance degeneracy**

Consider the WMAP six-parameter space  $\{\Omega_b h^2, \Omega_m h^2, A_s, \tau, n_s, \Omega_\Lambda\}$ First 5 parameters are well-constrained through power spectrum shape Constraint on  $\Omega_\Lambda$  comes entirely through angular peak scale:

 $\ell_a = \pi \frac{D_*}{s_*} \xleftarrow{} \text{Angular diameter distance to last scattering}$  $\downarrow$  Distance sound travels before last scattering

![](_page_38_Figure_3.jpeg)

Suppose that N "late universe" parameters are added (e.g.  $\Omega_K, m_\nu, w$ )

Then only one combination (corresponding to  $D_*$ ) is constrained

Generates N-fold angular diameter distance degeneracy in parameter space

Thursday, April 21, 2011

# Lensing breaks distance degeneracy

Example from Hu 2001: models with w = -1 and w = -2/3 $\Omega_{\Lambda}$  chosen so that models have same  $D_*$ 

![](_page_39_Figure_2.jpeg)

#### Neutrino mass

Neutrino oscillation experiments measure  $\Delta m_{\nu}^2$  between species  $\Delta m_{\nu}^2 = (0.040 \pm 0.0012 \text{ eV})^2$ 

Current analysis of world data:

 $\Delta m_{31}^2 = (0.049 \pm 0.0012 \text{ eV})^2$  $\Delta m_{21}^2 = (0.0087 \pm 0.00013 \text{ eV})^2$ 

Cosmology is complementary: lensing is mainly sensitive to  $\sum_{\nu} m_{\nu}$ 

![](_page_40_Figure_5.jpeg)

# Dark energy

In many parameterizations (e.g. w=constant), CMB lensing constrains dark energy weakly because redshift kernel (peaked at  $z \approx 2$ ) is poorly matched to redshifts where dark energy is important ( $z \leq 1$ )

![](_page_41_Figure_2.jpeg)

#### Smith et al (2008)

# Early dark energy

#### Doran & Robbers parameterization (2006):

$$\Omega_{\Lambda}(a) = \frac{\Omega_{\Lambda}^0 - \Omega_{\Lambda}^e (1 - a^{-3w_0})}{\Omega_{\Lambda}^0 + (1 - \Omega_{\Lambda}^0)a^{3w_0}} + \Omega_{\Lambda}^e (1 - a^{-3w_0})$$

Tracker model:

As 
$$z \to 0$$
,  $\Omega_{\Lambda}(z) \to \Omega_{\Lambda}^{0}$  and  $w(z) \to w_{0}$   
As  $z \to \infty$ ,  $\Omega_{\Lambda}(z) \to \Omega_{\Lambda}^{e}$  and  $w(z) \to 0$ 

#### **SNAP + unlensed CMBpol**

#### **SNAP + lensed CMBpol**

![](_page_42_Figure_7.jpeg)

![](_page_42_Figure_8.jpeg)

De Putter, Zahn & Linder (2009)

### **Curvature and joint constraints**

Because full deflection power spectrum is measured, can constrain multiple "late universe" parameters simultaneously

![](_page_43_Figure_2.jpeg)

![](_page_43_Figure_4.jpeg)

Smith et al (2008)

# Summary

Gravitational lensing imprints characteristic non-Gaussian correlations on the CMB which can be extracted via higher-point statistics

Few-sigma detections of CMB lensing via several methods  $(C_l^{dg}$  three-point,  $C_l^{TT}$  two-point,  $C_l^{dd}$  four-point)

Polarization ultimately allows CV-limited lens reconstruction to  $l \sim 1000$ , lensing "noise floor" on r can be beaten via delensing

Lensing breaks distance degeneracy in unlensed CMB, maps gravitational potentials at high-z on largest observable scales