The Shape of the CMB Lensing Bispectrum

Duncan Hanson

Berkeley Lensing Workshop, April 22, 2011

“The shape of the CMB lensing bispectrum”
Lewis, Challinor, Hanson (2011) arXiv:1101.2234

“CMB lensing and primordial non-Gaussianity”
Hanson, Smith, Challinor, Liguori (2009) arXiv:0905.4732
OUTLINE

I INTRODUCTION
- Lensing Bispectra
- Overlap with $f_{\text{NL}}^{\text{local}}$

II BISPECTRUM GUIDE:
- Significance in the high S/N limit
- Effect of lensing on the shape of other bispectra (particularly $f_{\text{NL}}^{\text{local}}$)

III PROSPECTS:
- Current status, ultimate limits.
- Planck
The CMB Temperature is given by

\[T(\hat{n}) = \Theta(\hat{n}) + \Theta^{ISW}(\hat{n}) + [\nabla \phi \cdot \nabla \Theta](\hat{n}) + \ldots, \]

where the ISW and lensing effects are

\[\Theta^{ISW}(\hat{n}) = 2 \int_0^{\chi_*} d\chi \dot{\Psi}(\chi \hat{n}; \eta_0 - \chi) \]

\[\phi(\hat{n}) = -2 \int_0^{\chi_*} d\chi \frac{\chi_* - \chi}{\chi_* \chi} \Psi(\chi \hat{n}; \eta_0 - \chi) \]

This leads to a non-Gaussian bispectrum:

\[\langle TTT \rangle = \left\langle \Theta^{ISW}(\nabla \phi \cdot \nabla \Theta) \Theta \right\rangle \]
THE E-ϕ CORRELATION

There are also lensing bispectra in polarization. No longer from cross-correlation with ISW, but from overlap between potentials which source ϕ and quadrupoles which source reionization E-modes (Lewis, Challinor, Hanson 2011). Recently implemented in CAMB.
THE LENSING BISPECTRUM

- The T-φ and E-φ correlations are significant—\(O(30\%) \) on large scales, but fade quickly.
- The φ-induced T and E covariances are mostly at high-\(l \), while the cross-correlation is at low-\(l \), so get a squeezed shape.

\[
\begin{align*}
\tau = 0.09 & \quad \tau = 0
\end{align*}
\]

Lewis, Challinor, Hanson (2011)
USE OF LENSING-ISW

- The lensing-ISW bispectrum is a (relatively) direct probe of dark energy (Seljak and Zaldarriaga 1998, Goldberg and Spergel 1998).
- Particularly good at breaking the angular diameter distance degeneracy (Hu 2001).
- There is a significant overlap with the f_{NL}^{local}-type bispectrum $\Psi^\text{NG}(\vec{x}) = \Psi + f_{NL}(\Psi^2 - \langle \Psi^2 \rangle)$ (Smith and Zaldarriaga 2006).
LENSING-ISW AND f_{local}^L

Why does the lensing-ISW bispectrum project onto the f_{local}^L bispectrum?

- Lensing convergence results in a local change of scale \rightarrow local change of variance.
- f_{local}^L corresponds to a local change in the amplitude of the power spectrum \rightarrow local change of variance.

So there is an overlap between the local and ISW bispectra (although phases differ). The large amplitude of the ISW-lensing bispectrum results in significant contamination for f_{local}^L.
THINGS TO WORRY ABOUT

Planck has the ability to detect this signal (plots to come later), but there are a few fundamental things to worry about:

▶ In the event of a significant detection, what is the effect of signal variance?
▶ What is the effect of lensing on other bispectra (claims of large effects from Cooray, Sarkar and Serra 2008), and is there a way to calculate the lensing of the bispectrum non-perturbatively?

Higher order lensing terms in $C_{l}^{\phi\phi}$ are known to be important for Planck, SPT (e.g. Alex’s talk yesterday).
We’ll write the lensed temperature graphically:

\[T(\hat{n}) = \Theta(\hat{n}) + \Theta^{ISW}(\hat{n}) + \nabla^i \phi \nabla_i \Theta(\hat{n}) + \nabla^i \phi \nabla^j \phi \cdot \nabla_{ij} \Theta(\hat{n}) + \ldots \]

Using the following glossary:

- **Observable field:** \(T \)
- **Gaussian field:** \(\Theta, \Theta^{ISW} \)
- **Product of fields:** \(\phi \)
In bispectrum-language, often think of the minimum-variance estimator for the lensing-ISW amplitude as

\[
\hat{A} = \frac{1}{\mathcal{F}} \sum_{l_1 l_2 l_3} \sum_{m_1 m_2 m_3} \sum \frac{T_{l_1 m_1} T_{l_2 m_2} T_{l_3 m_3}}{C_{l_1}^{TT} C_{l_2}^{TT} C_{l_3}^{TT}} B_{l_1 l_2 l_3}^{m_1 m_2 m_3}.
\]

It’s more natural to write

\[
\hat{A} = \frac{1}{\mathcal{F}} \sum_{l m} C_l^{T \phi} \hat{\phi}_{lm} T_{lm}^*. \]
In bispectrum-language, often think of the minimum-variance estimator for the lensing-ISW amplitude as

$$\hat{A} = \frac{1}{\mathcal{F}} \sum_{l_1l_2l_3} \sum_{m_1m_2m_3} T_{l_1m_1} T_{l_2m_2} T_{l_3m_3} C_{l_1}^{TT} C_{l_2}^{TT} C_{l_3}^{TT} B_{l_1l_2l_3}^{m_1m_2m_3}.$$

It's more natural to write

$$\hat{A} = \frac{1}{\mathcal{F}} \sum_{lm} C_l^T \hat{\phi}_{lm} T_{lm}^* N_l^{\phi \phi} C_l^{TT}.$$

\[\Theta_\text{ISW}_{lm} \]

April 22, 2011 10 / 17
Treating $\hat{\phi}$ as Gaussian, suggests the prescription

$$\hat{A} = \frac{1}{F} \sum_{lm} \frac{C_l^{T\phi} \phi_{lm} T_{lm}^*}{N_l^{\phi\phi} C_l^{TT}} \rightarrow$$

$$\hat{A} = \frac{1}{F'} \sum_{lm} \frac{C_l^{T\phi} \phi_{lm} T_{lm}^*}{(N_l^{\phi\phi} + C_l^{\phi\phi}) C_l^{TT} + (C_l^{T\phi})^2}.$$

From simulations, describes well the increase in variance due to signal.
Signal Variance for f_{NL}^{local}

- The same picture applies to the squeezed triangles of f_{NL}^{local} as well (sort of like Munshi and Heavens 2009).
- Can picture as correlation of two small-scale modes, modulated by large-scale mode.
- Potential improvement on the CSZ approach (Creminelli et al. 2007, Smith et al. 2011).
For a squeezed bispectrum, safe to use the "unlensed short-leg" approximation.

Lensing terms generate coupling between the two long-wavelength modes, e.g.

\[
\langle \Theta \phi \phi \phi \rangle = \langle \Theta \Theta \phi \phi \rangle = \Theta_{\text{ISW}}
\]
BISPECTRUM LENSING

- For a squeezed bispectrum, safe to use the “unlensed short-leg” approximation.
- Lensing terms generate coupling between the two long-wavelength modes, e.g.

\[
\left\langle \Theta \phi \phi \phi \phi \right\rangle = \left\langle \Theta \phi \phi \phi \right\rangle = \Theta ISW()
\]
Bispectrum Lensing

We want to calculate

\[
\begin{align*}
\nabla_i \phi \nabla_i \Theta & \quad + \quad \frac{1}{2} \nabla_i \phi \nabla_i \phi \nabla_{ij} \Theta & \quad + \quad \frac{1}{6} \nabla_i \phi \nabla_i \phi \nabla^k \phi \nabla_{ijk} \Theta \\
\langle & \quad T \quad \rangle & \quad + \quad \langle & \quad T \quad \rangle & \quad + \quad \langle & \quad T \quad \rangle & \quad + \quad \ldots
\end{align*}
\]

Always keeping one \(\phi \) free (grayed out) to correlate with ISW.

Note that in real space

\[
\frac{\delta}{\delta \nabla \phi(\hat{n})} T(\hat{n}) = (\nabla \Theta)[\hat{n} + \nabla \phi(\hat{n})] = \nabla T(\hat{n}),
\]

where \(\nabla T \) is the lensed gradient of the CMB.
BISPECTRUM LENSING

We want to calculate

\[\nabla_i \phi \nabla_i \Theta + \frac{1}{2} \nabla_i \phi \nabla_j \phi \nabla \Theta + \frac{1}{6} \nabla_i \phi \nabla_j \phi \nabla k \phi \nabla \Theta \ldots \]

Always keeping one \(\phi \) free (grayed out) to correlate with ISW.

In Fourier space we have (again with \(\hat{n} \))

\[\left\langle T(\vec{l}_1) \frac{\delta}{\delta \phi(\vec{l}_2)^*} T(\vec{l}_3) \right\rangle = -\frac{i}{2\pi} \delta(\vec{l}_1 + \vec{l}_2 + \vec{l}_3) \vec{l}_2 \cdot \left\langle T(\vec{l}_1) \nabla T(\vec{l}_1)^* \right\rangle \]

\[\approx -\frac{1}{2\pi} \delta(\vec{l}_1 + \vec{l}_2 + \vec{l}_3) (\vec{l}_1 \cdot \vec{l}_2) C_{l_1}^{TT}. \]

Where the validity of \(\approx \) is determined by the extent to which gradients and lensing commute.
Bispectrum Lensing

- So lensing of squeezed bispectra may be approximated simply by accurately lensing the long legs, e.g. using CAMB.
- Works well for $f_{\text{NL}}^{\text{local}}$.
- Corrects an $O(10\%)$ suppression at low-l.
- Also explains the $N_l^{(2)}$ bias for $\hat{\phi}_{lm}$ power spectrum at low-l.

Slice through $f_{\text{NL}}^{\text{local}}$

Hanson et al. (2009)
Detection on Data

- Currently null results on WMAP (e.g. Calabrese et. al. 2009).
- Ultimate detection significance with T and E limited by signal variance to $\approx 9\sigma$, although non-linear effects could make this higher (Mangilli and Verde 2009).

<table>
<thead>
<tr>
<th></th>
<th>$\sigma_{f_{NL}}$</th>
<th>σ_{lens}</th>
<th>Corr.</th>
<th>f_{NL}^{Bias}</th>
<th>$\sigma_{f_{NL}^{\text{marg}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>4.31</td>
<td>0.19</td>
<td>0.24</td>
<td>9.5</td>
<td>4.44</td>
</tr>
<tr>
<td>T+E</td>
<td>2.14</td>
<td>0.12</td>
<td>0.022</td>
<td>2.6</td>
<td>2.14</td>
</tr>
<tr>
<td>Planck T</td>
<td>5.92</td>
<td>0.26</td>
<td>0.22</td>
<td>6.4</td>
<td>6.06</td>
</tr>
<tr>
<td>Planck T+E</td>
<td>5.19</td>
<td>0.22</td>
<td>0.13</td>
<td>4.3</td>
<td>5.23</td>
</tr>
</tbody>
</table>

Lewis, Challinor, Hanson (2011)
Planck Prospects

- Good match for Planck, with full-sky coverage.
- Predict $\approx 4\sigma$ from temperature alone for linear ISW.
- Difficulty in that low-l in ϕ is also where many scan-strategy associated systematics live.
- Also need to worry about things like peculiar velocity dipole.

A challenge, but exciting!
CONCLUSIONS

- ISW-\(\phi\) directly traces dark energy / matter at \(z \sim 2\).
- E-\(\phi\) is significant as well, and should be sensitive to even higher redshifts.
- Signal variance can be treated by approximating \(\hat{\phi}\) as Gaussian.
- “non-Perturbative” lensed bispectra can be calculated in the squeezed limit, using unlensed short-legs.
- Aim for detection with Planck, which has sky-coverage and S/N for \(\approx 4\sigma\).