Magnificent Magnification

Eric Huff and Genevieve Graves

Berkeley, April 22, 2011
My day job: Cosmic Shear in SDSS
My day job: Cosmic Shear in SDSS
My day job: Cosmic Shear in SDSS
Why is this hard?

telescope psf distortions are large
Why is this hard?

telescope psf distortions are large

astrophysical ‘systematics’ are hard to model
Why is this hard?

telescope psf distortions are large

astrophysical ‘systematics’ are hard to model

the fluctuations are averaged over huge line-of-sight distances
Why is this hard?

telescope psf distortions are large

astrophysical 'systematics' are hard to model

the fluctuations are averaged over huge line-of-sight distances

the intrinsic shape noise is large
Is there an easier way?

Maybe.

There are other components to the distortion tensor.
The Effect of Magnification on galaxy sizes and luminosities
The Effect of Magnification on galaxy sizes and luminosities
The Effect of Magnification on galaxy sizes and luminosities
The Effect of Magnification on galaxy sizes and luminosities
The effect of Magnification on Luminosities

A heroic effort:
13.5 million galaxy lenses
225,000 quasar sources
Why shear is still much better than the alternatives:

We want a way to reduce the intrinsic scatter.
The Fundamental Plane of Early Type Galaxies

~15% intrinsic scatter

no detected variation with environment

a photometric analogue exists
The Effect of Magnification on the Photometric Plane

at fixed mass, concentration and effective radius are inversely correlated
The Effect of Magnification on the Photometric Plane

\[\kappa = \log (R_{\text{eff}}) - f(\mu, \log \text{conc}) \]
Constructing a Sample using SDSS

60,000 Lenses:
\[\log (\text{stellar mass}) > 11.0 \]
\[0.2 < z < 0.4 \]

10 million Sources:
- resolved galaxies
- early-type SEDs (35%)
Systematics: Sky Subtraction

θ

redshift

$\Delta \log R_{\theta}$

θ (degrees)
Systematics: Source Clustering with Photo-z’s

\[\theta \]

redshift

\[\log (1+\xi) \]
Lensing Detection: Comparing to Existing Measurements

Preliminary

Graph 1: Δ(\log R_{eff}) vs. θ (degrees)

Graph 2: Σ (M/pc^2) vs. kpc
Where to go from here.

1. Port over the shear infrastructure
 (shear measurements have a big head start)
2. Use properly calibrated estimators
3. Fully account for effects of psf
4. Find and use tighter scaling relations
5. Use the blue galaxies (photometric Tully-Fisher?)
Speculation

1. Magnification not affected by g-i correlation at same order -- tidal field contamination now a signal

2. Lots of other quantities could be used to estimate radii