The Atacama Cosmology Telescope:

Detection of the CMB Lensing Power Spectrum
and First Applications
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Reconstructing the lensing power spectrum
Results: The ACT detection

Null tests, contaminant levels and other checks
Application of results: CMB-only constraints on Q,



Recap: CMB Lensin
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* Large scale structure potentials gravitationally deflect CMB
photons by a lensing deflection angle d(n)

» Measurement of the deflection field is a measurement of
matter fluctuations AND the geometry of the universe

-> very useful for cosmological constraints
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Reconstructing Lensing Power from CMB Data

* Can find lensing because it breaks Gaussianity: non-Gaussian
part of lensed T 4-point function ~ deflection power spectrum

* Hence we can estimate the lensing power spectrum from
lensing-type non-Gaussianity in the four-point function:
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[Hu & Okamoto (2002), Kesden, Cooray, Kamionkowski (2003)]
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Reconstructing Lensing Power from CMB Data
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* Must subtract off Gaussian part (= unconnected part = N(0)
bias)
* How can we estimate this Gaussian bias (unconnected part)?
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Estimating the Gaussian Bias
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* One approach: obtain from Monte-Carlos
— Problem: simulating a large number

— Small fractional error in bias calculation -> large systematic
error in reconstructed power. Especially true on noise-

dominated scales

— Need to know window functions, true power spectra, noise very
accurately
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A More Robust Approach — Bias from Data

* Better: estimate Gaussian N(o) bias from the data

* One way to do this: just use observed power spectrum to
evaluate the unconnected part directly

[Hanson et al. 2010]



A More Robust Approach — Bias from Data

* Method 2: Obtain a ~Gaussian field with the same power
spectrum from the observed T map by randomizing phases of
all the Fourier modes (similar to Method 1...)

23/
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* Monte Carlo small residual bias, due to noise correlations,

window functions, etc
* Only Simulate small quantities

[Hanson et al. 2010]



Aside: No-Bias Method

Can also directly calculate lensing power from regions of parameter space with no bias.
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[Sherwin & Das 2010, Hu 2001]
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Difficulties in Lensing Power Estimation

* Correlated atmospheric noise at low | can contaminate signal
— Filter out modes below I=500

* Unresolved IR point sources and SZ dominate power at high |
— Only use modes below |1=2300

* Point sources can add spurious power
— Remove using template subtraction method



Test Reconstruction Pipeline with Simulations

Find that pipeline gives unbiased reconstruction (simulation also gives error bars):
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Higher order biases not important for our S/N.
Note: Error bars are for 1 realization, not for the mean shown in red.
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Detection of the Lensing Power Spectrum

4-sigma detection of the power spectrum of the lensing deflection angle
on ACT equatorial data:
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[Das, Sherwin et al. 2011, arXiv:1103.2124]
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Detection of the Lensing Power Spectrum

* Consistent with WMAP LCDM prediction

* Constrains amplitude of Matter Fluctuations at z~0.5-3 to
12%.
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» Direct gravitational probe of dark matter to z~1100 (though
most sensitive to z~0.5-3)
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Null Tests
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* Check phase randomi-
zation, check reconstruction by eye, etc. — all tests successful

[Das, Sherwin et al. 2011, arXiv:1103.2124]
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Levels of Potential Contaminants

» Test level of spurious lensing signal due to IR point sources,
tSZ, kSZ using simulations [Sehgal et al. 2009]

* Find negligible contamination:
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[Das, Sherwin et al. 2011, arXiv:1103.2124]
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First Constraints From
The ACT CMB Lensing
Power Spectrum



What Constraints can we Obtain from the CMB Alone?

Supernova Cosmology Project
Amanullah, et al., Ap.J. (2010)

No Big | ' « CMB geometric degeneracy:
- [P ' Q,= 0 consistent with
Union2 SN Ia temperature power spectra
12F Compilation
‘ with SN
Systematics

_—» Can we tell these apart with CMB-only data?
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Models Indistinguishable from CMB Power Spectra

* Expected degeneracy clearly visible (only small difference at
high | due to lensing, low | due to ISW):
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Can Lensing Break the CMB Degeneracy?

Measurement of the lensing power is a clean measurement of
matter fluctuations and the geometry of the universe:
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Power spectrum of deflection field is sensitive to the large
differences in fluctuations and geometry

le—7
40 L

3.5
3.0

LB | T T LA B B B A |

2.5
2.0
1.5
1.0
0.5

10! 10° 10°

Ff.’ Cvgfd /4

Berkeley, 4/21/11 [ 19



Why is There More Lensing Without €2,?
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[Sherwin, Dunkley, Das et al. in prep.]
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Constraints from the Lensing Power Spectrum

* Appears ACT Lensing power spectrum data might favor a
universe with Q, ...
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* So construct WMAP + ACT-lensing Likelihood, calculate
constraints on

« ACT

[Sherwin, Dunkley, Das
etal.in prep.]
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Lensing: CMB-only Evidence for €,

2D confidence contours:

[Sherwin, Dunkley, Das
etal.in prep.]
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Lensing: CMB-only Evidence for €,

1-D Posterior distribution for Q,:

Peak at Q,=0.67

[Sherwin, Dunkley, Das
etal.in prep.]
Comparing difference in -2 In L favors LCDM model at 3.5 sigma over best model with no DE .
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Evidence for Q) , From the CMB Alone

Using WMAP + ACT - Lensing only, we can rule out a universe
without Dark Energy at 3.5 sigma

Different systematics than SN, LSS probes, small

Can do MUCH better with SPT, Planck, ACTPOL...

This is an independent confirmation of the existence of Q,
from just the CMB

On arXiv in the next few days



The Future of CMB Lensing Science

* SPT, Planck power spectra, cross-correlations
* Polarization Lensing: lots of interesting questions
— What is the best estimator on small scales for real data?
— Best way to deal with biases?
— How to deal with sky-cuts, real noise, instrumental systematics?
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Summary

* CMB Lensing directly probes dark matter distribution

* Measurement of lensing power spectrum — robust 4-sigma detection with
ACT

* Evidence for Q, at 3.5 sigma from CMB only using WMAP + ACT lensing

* Higher S/N spectra, cross-correlations, polarization lensing... the
beginning of an exciting research program
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