**Tuesday, October 28**

*Cosmology/BCCP*

Location: UCB, Hearst Field Annex B-1, 1:10 p.m.

Speaker: Joseph Clampitt, Penn

Title: “Lensing Measurements of SDSS Voids and Filaments”Abstract: I will describe measurements of weak lensing mass profiles of voids from a volume-limited sample of SDSS Luminous Red Galaxies (LRGs). The stacked shear measurement has been performed on ~10,000 voids and subvoids with radii between 15-40 Mpc/h and redshifts between 0.16-0.37. The characteristic radial shear signal of voids is detected with a statistical significance that exceeds 13-sigma. The mass profile corresponds to a fractional underdensity of about -0.4 inside the void radius and a slow approach to the mean density indicating a partially compensated void structure. Time permitting, I will also describe a stacked weak lensing detection of filaments between close pairs of LRGs.

**Friday, October 31 **

*INPA/Cosmology/BCCP*

Location: LBNL, 50-5026, 12 p.m.Speaker: Liang Dai, JHU

Title: “Conformal Fermi coordinates and the local universe formalism”Abstract: In an inhomogeneous Universe, the physical effect of long-wavelength perturbation on short distances should be such that short-wavelength perturbations effectively evolve in a modified homogeneous universe. We explicitly construct the so-called conformal Fermi normal coordinates (CFNC) through an expansion around the observer’s geodesic, which describe the local spacetime as a quasi-FRW metric and are valid at all times. The CFNC formalism demonstrates that the zeroth-order picture is that local expansion rate and spatial curvature are renormalized by long-wavelength perturbations, and the general condition for the spatial curvature to be a constant is derived. Beyond this “separate universe” picture, CFNC allows for systematic extraction of additional local effects from long-wavelength perturbations that cannot be attributed to a re-definition of the background FRW cosmology. The formalism can be useful in the studies of tracer bias, intrinsic alignment and gravitational-wave “fossil” effect.