
Beam asymmetry in B-mode experiments

Christopher Wallis
Michael Brown, Richard Battye

Jodrell Bank Centre for Astrophysics
University of Manchester



Outline

• CMB polarisation and the importance of 
detecting B-modes

• Motivation for new method to clean 
asymmetry bias from CMB experiments

• Brief description of new map making 
algorithm



CMB observables



Scalar and Tenser perturbations

In Fourier1 space this multiplication takes the form of a convolution

S̃d
k =

1X

k0
=�1

h̃k�k0 S̃k0 (5)

S̃d
k =

1X

k0
=�1

Hkk0 S̃k0 , (6)

where we have defined Hkk0⌘h̃k�k0 . Therefore, if we can invert the matrix Hkk0 then we can recover
the true S̃k. As discussed earlier recovering the spin-0 and spin-2 features of S( ) is the main goal
of this work, as these are the temperature and polarisation of the pixel. Therefore, we would like to
obtain an estimate for S̃

0

and S̃±2

.
Inverting the matrix Hkk0 as it is written in equation (6) would be impossible, firstly it is infinitely

large and secondly for any realistic h( ) the matrix will be singular, by realistic we mean not h( )=1,
which refers to an ideal scan strategy. However, if we make the assumption that S̃k cuts o↵ at a
small value of k and the angle coverage of that pixel is good enough then this reduced matrix will be
invertible. Allowing us to use

S̃k =

k
maxX

k0
=�k

max

H�1

kk0 S̃
d
k0 . (7)

We can chose k
max

by measuring the azimuthal dependence of the beam and ensuring that we will
capture all the Fourier modes in S( ). In figure 1 we show an implementation of this idea on a mock
S( ) given by

S( ) = a
0

+ a
2

cos(2 + �
2

) + a
4

cos(4 + �
4

) (8)

We chose 9 random orientations to observe this function then attempted to reconstruct the S( )
with k

max

=0, 2, 4. The results on the evaluated ai,�i are shown in table ??.

b
0`k =

Z
d⌦

0

Y ⇤
`k(⌦)T̃ (⌦) (9)

b±2`k =

Z
d⌦±2

Y ⇤
`k(⌦)[Q̃(⌦)⌥ iŨ(⌦)], (10)

CXY
` =

1

2`+ 1

X̀

m=�`

aX
`maY ⇤

`m (11)

1

We define the Fourier transform of f( ) and the inverse to be

˜fk =

1

2⇡

Z
2⇡

0

d e�ik f( ), (3)

f( ) =

1X

k=�1
eik ˜fk. (4)
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Fig.2: Forecast for B-modes detection by LSPE . Bottom solid line: total error for a component separation weighting 
scheme that minimizes foregrounds residuals. Top solid line: total error for the minimum variance weighting scheme. 
The total errors are the sum of the noise (triangles) and foreground (squares) errors. A weighting scheme that 
minimizes foregrounds residuals will lead to some amplification of the noise (as evident in this plot) but remains a 
reasonable choice, since it reduces the impact of foregrounds by orders of magnitude. See text for details.   

2. BALLOON FLIGHTS IN THE POLAR NIGHT 
Long duration (2 weeks or more) stratospheric balloon flights are routinely performed every year by NASA-CSBF in 
Antarctica, during the summer season ( see e.g.27). These flights offer continuous operation of heavy payloads (up to 2 
tons) in the stratosphere (at altitudes around 35 – 40 km) for more than 2 weeks (and up to 1 month). The successful 
ATIC28, BLAST29 and BOOMERanG30 are good examples of experiments exploiting this opportunity. In the Arctic, an 
exploratory program has been carried out in collaboration with the Italian Space Agency, demonstrating the feasibility of 
long duration flights launched from Longyearbyen (Svalbard Islands)31 (see Fig.3). 

   
Figure 3. Left: Ground path of one of the test flights performed by ASI to test the stratospheric circulation near the 
North Pole. This flight was performed in summer. Right: Launch of a heavy-lift balloon from the Longyearbyen 
airport (Svalbard Islands, latitude 78oN).  

 



LSPE beam

• 17 wave guide modes

• Each mode coupled 
to the bolometer

• maximum sensitivity

• Asymmetric beam

Asymmetric MASTER-like analysis (AMLA) 5
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Figure 1. Left: The simulated beam of the 17 moded horn planned to be on board LSPE. Middle: the reconstruction of the beam only retaining 2 modes.
Right: The absolute error between the simulated beam and the reconstruction.

15GHz horn which is part of the SWIPE instrument. The resulting
beam is shown in figure 1, we can clearly see the asymmetry in the
beam. We also test the algorithm with an elliptical Gaussian.

We set k
max

=2 and also assume that b
`,±1

⌧b
`,0

. Explicitly
the decomposition of the beam can be written as,

b
lk

= b
l0

�
k0

+ b
l+2

�
k,+2

+ b
l�2

�
k,�2

. (38)

In figure 1 we show that this is a good approximation for the
SWIPE instrument.

We can instantly see that this will simplify equation (20)
by limiting the sum over k

2

and k
3

to be non-zero only when
k
2

, k
3

=0,±2. There is no requirement by the method to have
k
max

=2 just that it is small as computation time and memory
requirements will increase rapidly with k

max

, we use this as a
demonstration that our approximation is a significant improvement
on the axisymmetric approximation. We also apply the algorithm
to an elliptical Gaussian with the expression,

B(✓,�) =
1

2⇡q�2

e
� ✓2

2�2 (cos

2
�+q

�1
sin

2
�)

, (39)

where q is the parameter that defines the asymmetry of the
beam. If q=1 then the beam is axisymmetric. To test this algorithm
we chose �=30 and q=1.5, which is greater then that what you
would expect for a CMB experiment. We plot the decomposition of
this beam in figure 2 we can see that the asymmetry is captured by
only a relatively small number of terms.

5.1 Using the noise power to set k
max

To create an experiment with and unbiased estimate of the cosmo-
logical parameters any systematic errors on the power spectra must
be a small fraction of statistical error caused by noise. For a par-
ticular asymmetric term with k=c, with a reasonable sky coverage,
the leading order term contribution to C̃00

`

is ⇠|b̃
0`c

|

2C00

`

, where
b̃
0`c

=b
0`c

/b
000

(2`+1). Therefore the asymmetric term should be
included if,

|b̃
0`c

|

2C00

`

> fhN00

`

i

�

, (40)

Figure 2. We plot b2
`k

for k=0, 2, 4, 6, 8, 10 for a Gaussian beam defined
in equation (39) with �=30 and q=1.5. The decomposition is real so only
that part is plotted.

where f is sum defined tolerance level and hN00

`

i

�

is the standard
deviation of the noise power. This rule of thumb becomes prob-
lematic when there is a small sky coverage and highly asymmetric
beam, this is due to the coupling between asymmetric terms of dif-
ferent k. This source of coupling is damped in the all sky case.
Due to the cross spectra, W`

k2k3
, being small when k

2

6=k
3

, there-
fore making the coupling matrix M `1`2

00k2k3
small. However in the

case of a small scan strategy this cross spectra can be a signifi-
cant size, causing a significant contribution to the operator by a
term of the form b⇤

0`2k2
b
0`2k3M

`1`2
00k2k3

, where k
2

6=k
3

. This new
contribution could potentially be larger then that where k

2

=k
3

if
|b

0`k2 |�|b
0`k3 |.

6 TESTING ON SIMULATIONS

To test this algorithm a piece of FORTRAN code has been devel-
oped. We test only the coupling in the temperature power spectrum.
Assuming the polarisation spectra of the CMB to be zero reduces
the coupling to,
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LSPE beam 
decomposition

In Fourier1 space this multiplication takes the form of a convolution

S̃d
k =

1X

k0
=�1

h̃k�k0 S̃k0 (5)

S̃d
k =

1X

k0
=�1

Hkk0 S̃k0 , (6)

where we have defined Hkk0⌘h̃k�k0 . Therefore, if we can invert the matrix Hkk0 then we can recover
the true S̃k. As discussed earlier recovering the spin-0 and spin-2 features of S( ) is the main goal
of this work, as these are the temperature and polarisation of the pixel. Therefore, we would like to
obtain an estimate for S̃

0

and S̃±2

.
Inverting the matrix Hkk0 as it is written in equation (6) would be impossible, firstly it is infinitely

large and secondly for any realistic h( ) the matrix will be singular, by realistic we mean not h( )=1,
which refers to an ideal scan strategy. However, if we make the assumption that S̃k cuts o↵ at a
small value of k and the angle coverage of that pixel is good enough then this reduced matrix will be
invertible. Allowing us to use

S̃k =

k
maxX

k0
=�k

max

H�1

kk0 S̃
d
k0 . (7)

We can chose k
max

by measuring the azimuthal dependence of the beam and ensuring that we will
capture all the Fourier modes in S( ). In figure 1 we show an implementation of this idea on a mock
S( ) given by

S( ) = a
0

+ a
2

cos(2 + �
2

) + a
4

cos(4 + �
4

) (8)

We chose 9 random orientations to observe this function then attempted to reconstruct the S( )
with k

max

=0, 2, 4. The results on the evaluated ai,�i are shown in table ??.

b
0`k =

Z
d⌦

0

Y ⇤
`k(⌦)T̃ (⌦) (9)

b±2`k =

Z
d⌦±2

Y ⇤
`k(⌦)[Q̃(⌦)⌥ iŨ(⌦)], (10)

1

We define the Fourier transform of f( ) and the inverse to be

˜fk =

1

2⇡

Z
2⇡

0

d e�ik f( ), (3)

f( ) =

1X

k=�1
eik ˜fk. (4)
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Figure 1. Left: The simulated beam of the 17 moded horn planned to be on board LSPE. Middle: the reconstruction of the beam only retaining 2 modes.
Right: The absolute error between the simulated beam and the reconstruction.

15GHz horn which is part of the SWIPE instrument. The resulting
beam is shown in figure 1, we can clearly see the asymmetry in the
beam. We also test the algorithm with an elliptical Gaussian.

We set k
max

=2 and also assume that b
`,±1

⌧b
`,0

. Explicitly
the decomposition of the beam can be written as,

b
lk

= b
l0

�
k0

+ b
l+2

�
k,+2

+ b
l�2

�
k,�2

. (38)

In figure 1 we show that this is a good approximation for the
SWIPE instrument.

We can instantly see that this will simplify equation (20)
by limiting the sum over k

2

and k
3

to be non-zero only when
k
2

, k
3

=0,±2. There is no requirement by the method to have
k
max

=2 just that it is small as computation time and memory
requirements will increase rapidly with k

max

, we use this as a
demonstration that our approximation is a significant improvement
on the axisymmetric approximation. We also apply the algorithm
to an elliptical Gaussian with the expression,

B(✓,�) =
1

2⇡q�2

e
� ✓2

2�2 (cos

2
�+q

�1
sin

2
�)

, (39)

where q is the parameter that defines the asymmetry of the
beam. If q=1 then the beam is axisymmetric. To test this algorithm
we chose �=30 and q=1.5, which is greater then that what you
would expect for a CMB experiment. We plot the decomposition of
this beam in figure 2 we can see that the asymmetry is captured by
only a relatively small number of terms.

5.1 Using the noise power to set k
max

To create an experiment with and unbiased estimate of the cosmo-
logical parameters any systematic errors on the power spectra must
be a small fraction of statistical error caused by noise. For a par-
ticular asymmetric term with k=c, with a reasonable sky coverage,
the leading order term contribution to C̃00

`

is ⇠|b̃
0`c

|

2C00

`

, where
b̃
0`c

=b
0`c

/b
000

(2`+1). Therefore the asymmetric term should be
included if,

|b̃
0`c

|

2C00

`

> fhN00

`

i

�

, (40)

Figure 2. We plot b2
`k

for k=0, 2, 4, 6, 8, 10 for a Gaussian beam defined
in equation (39) with �=30 and q=1.5. The decomposition is real so only
that part is plotted.

where f is sum defined tolerance level and hN00

`

i

�

is the standard
deviation of the noise power. This rule of thumb becomes prob-
lematic when there is a small sky coverage and highly asymmetric
beam, this is due to the coupling between asymmetric terms of dif-
ferent k. This source of coupling is damped in the all sky case.
Due to the cross spectra, W`

k2k3
, being small when k

2

6=k
3

, there-
fore making the coupling matrix M `1`2

00k2k3
small. However in the

case of a small scan strategy this cross spectra can be a signifi-
cant size, causing a significant contribution to the operator by a
term of the form b⇤

0`2k2
b
0`2k3M

`1`2
00k2k3

, where k
2

6=k
3

. This new
contribution could potentially be larger then that where k

2

=k
3

if
|b

0`k2 |�|b
0`k3 |.

6 TESTING ON SIMULATIONS

To test this algorithm a piece of FORTRAN code has been devel-
oped. We test only the coupling in the temperature power spectrum.
Assuming the polarisation spectra of the CMB to be zero reduces
the coupling to,

c� 2002 RAS, MNRAS 000, 1–??
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Figure 1. Left: The simulated beam of the 17 moded horn planned to be on board LSPE. Middle: the reconstruction of the beam only retaining 2 modes.
Right: The absolute error between the simulated beam and the reconstruction.

15GHz horn which is part of the SWIPE instrument. The resulting
beam is shown in figure 1, we can clearly see the asymmetry in the
beam. We also test the algorithm with an elliptical Gaussian.

We set k
max

=2 and also assume that b
`,±1

⌧b
`,0

. Explicitly
the decomposition of the beam can be written as,

b
lk

= b
l0

�
k0

+ b
l+2

�
k,+2

+ b
l�2

�
k,�2

. (38)

In figure 1 we show that this is a good approximation for the
SWIPE instrument.

We can instantly see that this will simplify equation (20)
by limiting the sum over k

2

and k
3

to be non-zero only when
k
2

, k
3

=0,±2. There is no requirement by the method to have
k
max

=2 just that it is small as computation time and memory
requirements will increase rapidly with k

max

, we use this as a
demonstration that our approximation is a significant improvement
on the axisymmetric approximation. We also apply the algorithm
to an elliptical Gaussian with the expression,

B(✓,�) =
1

2⇡q�2

e
� ✓2

2�2 (cos

2
�+q

�1
sin

2
�)

, (39)

where q is the parameter that defines the asymmetry of the
beam. If q=1 then the beam is axisymmetric. To test this algorithm
we chose �=30 and q=1.5, which is greater then that what you
would expect for a CMB experiment. We plot the decomposition of
this beam in figure 2 we can see that the asymmetry is captured by
only a relatively small number of terms.

5.1 Using the noise power to set k
max

To create an experiment with and unbiased estimate of the cosmo-
logical parameters any systematic errors on the power spectra must
be a small fraction of statistical error caused by noise. For a par-
ticular asymmetric term with k=c, with a reasonable sky coverage,
the leading order term contribution to C̃00

`

is ⇠|b̃
0`c

|

2C00

`

, where
b̃
0`c

=b
0`c

/b
000

(2`+1). Therefore the asymmetric term should be
included if,

|b̃
0`c

|

2C00

`

> fhN00

`

i

�

, (40)

Figure 2. We plot b2
`k

for k=0, 2, 4, 6, 8, 10 for a Gaussian beam defined
in equation (39) with �=30 and q=1.5. The decomposition is real so only
that part is plotted.

where f is sum defined tolerance level and hN00

`

i

�

is the standard
deviation of the noise power. This rule of thumb becomes prob-
lematic when there is a small sky coverage and highly asymmetric
beam, this is due to the coupling between asymmetric terms of dif-
ferent k. This source of coupling is damped in the all sky case.
Due to the cross spectra, W`

k2k3
, being small when k

2

6=k
3

, there-
fore making the coupling matrix M `1`2

00k2k3
small. However in the

case of a small scan strategy this cross spectra can be a signifi-
cant size, causing a significant contribution to the operator by a
term of the form b⇤

0`2k2
b
0`2k3M

`1`2
00k2k3

, where k
2

6=k
3

. This new
contribution could potentially be larger then that where k

2

=k
3

if
|b

0`k2 |�|b
0`k3 |.

6 TESTING ON SIMULATIONS

To test this algorithm a piece of FORTRAN code has been devel-
oped. We test only the coupling in the temperature power spectrum.
Assuming the polarisation spectra of the CMB to be zero reduces
the coupling to,
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In Fourier1 space this multiplication takes the form of a convolution

S̃d
k =

1X

k0
=�1

h̃k�k0 S̃k0 (5)

S̃d
k =

1X

k0
=�1

Hkk0 S̃k0 , (6)

where we have defined Hkk0⌘h̃k�k0 . Therefore, if we can invert the matrix Hkk0 then we can recover
the true S̃k. As discussed earlier recovering the spin-0 and spin-2 features of S( ) is the main goal
of this work, as these are the temperature and polarisation of the pixel. Therefore, we would like to
obtain an estimate for S̃

0

and S̃±2

.
Inverting the matrix Hkk0 as it is written in equation (6) would be impossible, firstly it is infinitely

large and secondly for any realistic h( ) the matrix will be singular, by realistic we mean not h( )=1,
which refers to an ideal scan strategy. However, if we make the assumption that S̃k cuts o↵ at a
small value of k and the angle coverage of that pixel is good enough then this reduced matrix will be
invertible. Allowing us to use

S̃k =

k
maxX

k0
=�k

max

H�1

kk0 S̃
d
k0 . (7)

We can chose k
max

by measuring the azimuthal dependence of the beam and ensuring that we will
capture all the Fourier modes in S( ). In figure 1 we show an implementation of this idea on a mock
S( ) given by

S( ) = a
0

+ systematics (8)

S( ) = a
0

+ a
2

cos(2 + �
2

) + a
4

cos(4 + �
4

) (9)

We chose 9 random orientations to observe this function then attempted to reconstruct the S( )
with k

max

=0, 2, 4. The results on the evaluated ai,�i are shown in table ??.

b
0`k =

Z
d⌦

0

Y ⇤
`k(⌦)T̃ (⌦) (10)

b±2`k =

Z
d⌦±2

Y ⇤
`k(⌦)[Q̃(⌦)⌥ iŨ(⌦)], (11)

CXY
` =

1

2`+ 1

X̀

m=�`

aX
`maY ⇤

`m (12)

1

We define the Fourier transform of f( ) and the inverse to be

˜fk =

1

2⇡

Z
2⇡

0

d e�ik f( ), (3)

f( ) =

1X

k=�1
eik ˜fk. (4)

2



Detected Signal Depends on 
OrientationAsymmetric MASTER-like analysis (AMLA) 5

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
x/degrees

-2

-1

0

1

2

y/
de
gr
ee
s

-2 -1 0 1 2
-2

-1

0

1

2

-40 -30 -20 -10 0
B(x,y)/dB

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
x/degrees

-2

-1

0

1

2

y/
de
gr
ee
s

-2 -1 0 1 2
-2

-1

0

1

2

-40 -30 -20 -10 0
R(x,y)/dB

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
x/degrees

-2

-1

0

1

2

y/
de
gr
ee
s

-2 -1 0 1 2
-2

-1

0

1

2

-40 -30 -20 -10 0
|B(x,y)-R(x,y)|/dB

Figure 1. Left: The simulated beam of the 17 moded horn planned to be on board LSPE. Middle: the reconstruction of the beam only retaining 2 modes.
Right: The absolute error between the simulated beam and the reconstruction.

15GHz horn which is part of the SWIPE instrument. The resulting
beam is shown in figure 1, we can clearly see the asymmetry in the
beam. We also test the algorithm with an elliptical Gaussian.

We set k
max

=2 and also assume that b
`,±1

⌧b
`,0

. Explicitly
the decomposition of the beam can be written as,

b
lk

= b
l0

�
k0

+ b
l+2

�
k,+2

+ b
l�2

�
k,�2

. (38)

In figure 1 we show that this is a good approximation for the
SWIPE instrument.

We can instantly see that this will simplify equation (20)
by limiting the sum over k

2

and k
3

to be non-zero only when
k
2

, k
3

=0,±2. There is no requirement by the method to have
k
max

=2 just that it is small as computation time and memory
requirements will increase rapidly with k

max

, we use this as a
demonstration that our approximation is a significant improvement
on the axisymmetric approximation. We also apply the algorithm
to an elliptical Gaussian with the expression,

B(✓,�) =
1

2⇡q�2

e
� ✓2

2�2 (cos

2
�+q

�1
sin

2
�)

, (39)

where q is the parameter that defines the asymmetry of the
beam. If q=1 then the beam is axisymmetric. To test this algorithm
we chose �=30 and q=1.5, which is greater then that what you
would expect for a CMB experiment. We plot the decomposition of
this beam in figure 2 we can see that the asymmetry is captured by
only a relatively small number of terms.

5.1 Using the noise power to set k
max

To create an experiment with and unbiased estimate of the cosmo-
logical parameters any systematic errors on the power spectra must
be a small fraction of statistical error caused by noise. For a par-
ticular asymmetric term with k=c, with a reasonable sky coverage,
the leading order term contribution to C̃00

`

is ⇠|b̃
0`c

|

2C00

`

, where
b̃
0`c

=b
0`c

/b
000

(2`+1). Therefore the asymmetric term should be
included if,

|b̃
0`c

|

2C00

`

> fhN00

`

i

�

, (40)

Figure 2. We plot b2
`k

for k=0, 2, 4, 6, 8, 10 for a Gaussian beam defined
in equation (39) with �=30 and q=1.5. The decomposition is real so only
that part is plotted.

where f is sum defined tolerance level and hN00

`

i

�

is the standard
deviation of the noise power. This rule of thumb becomes prob-
lematic when there is a small sky coverage and highly asymmetric
beam, this is due to the coupling between asymmetric terms of dif-
ferent k. This source of coupling is damped in the all sky case.
Due to the cross spectra, W`

k2k3
, being small when k

2

6=k
3

, there-
fore making the coupling matrix M `1`2

00k2k3
small. However in the

case of a small scan strategy this cross spectra can be a signifi-
cant size, causing a significant contribution to the operator by a
term of the form b⇤

0`2k2
b
0`2k3M

`1`2
00k2k3

, where k
2

6=k
3

. This new
contribution could potentially be larger then that where k

2

=k
3

if
|b

0`k2 |�|b
0`k3 |.

6 TESTING ON SIMULATIONS

To test this algorithm a piece of FORTRAN code has been devel-
oped. We test only the coupling in the temperature power spectrum.
Assuming the polarisation spectra of the CMB to be zero reduces
the coupling to,
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In Fourier1 space this multiplication takes the form of a convolution
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k =

1X

k0
=�1

Hkk0 S̃k0 , (6)

where we have defined Hkk0⌘h̃k�k0 . Therefore, if we can invert the matrix Hkk0 then we can recover
the true S̃k. As discussed earlier recovering the spin-0 and spin-2 features of S( ) is the main goal
of this work, as these are the temperature and polarisation of the pixel. Therefore, we would like to
obtain an estimate for S̃

0

and S̃±2

.
Inverting the matrix Hkk0 as it is written in equation (6) would be impossible, firstly it is infinitely

large and secondly for any realistic h( ) the matrix will be singular, by realistic we mean not h( )=1,
which refers to an ideal scan strategy. However, if we make the assumption that S̃k cuts o↵ at a
small value of k and the angle coverage of that pixel is good enough then this reduced matrix will be
invertible. Allowing us to use

S̃k =

k
maxX

k0
=�k

max

H�1

kk0 S̃
d
k0 . (7)

We can chose k
max

by measuring the azimuthal dependence of the beam and ensuring that we will
capture all the Fourier modes in S( ). In figure 1 we show an implementation of this idea on a mock
S( ) given by

S( ) = a
0

+ systematics (8)

S( ) = a
0

+ a
2

cos(2 + �
2

) + a
4

cos(4 + �
4

) (9)

We chose 9 random orientations to observe this function then attempted to reconstruct the S( )
with k

max

=0, 2, 4. The results on the evaluated ai,�i are shown in table ??.
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We define the Fourier transform of f( ) and the inverse to be
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temperature of the pixel

Figure 1: Top: We plot the input S( ) described by equation (8) along with the observed points with

crosses. The dashed line shows the reconstruction if k
max

=2. Bottom: the error on the reconstruction

when k
max

=2, 4 in stars and crosses. The reduction in error is evident.
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CXY
` =

1

2`+ 1

X̀

m=�`

aX
`maY ⇤

`m (12)

1

We define the Fourier transform of f( ) and the inverse to be

˜fk =

1

2⇡

Z
2⇡

0

d e�ik f( ), (3)

f( ) =

1X

k=�1
eik ˜fk. (4)

2

TOD
Map of sky smoothed

with axisymmetric 
component of the beam



Test on simulations
• Elliptical Gaussian beam FWHM 

= 7 arcmin

• Ratio of axis = 1.5

• Experimental Probe for 
Inflationary Cosmology (EPIC)



Test on simulations
• Elliptical Gaussian beam FWHM 

= 7 arcmin

• Ratio of axis = 1.5

• Experimental Probe for 
Inflationary Cosmology (EPIC) Removing beam asymmetry bias in CMB experiments 11

Figure 5. Top panel: The hit map for one year of observations for our simulated satellite-like experiment. Middle: The p2 quality, defined in equation (52), of
the scan strategy. Bottom panel: the weighting function used to apply a galactic and point source mask and apodise the hit map.

8.2 Removing the asymmetry bias on the temperature and
polarisation maps

Here we present a demonstration of how the map-making algorithm
can be used to remove the asymmetry bias on both the temperature
and polarisation maps.

To estimate the temperature map, the algorithm of Section 5
extracts only the spin-0 components of the TOD. This quantity con-
tains the temperature of the CMB smoothed with the axisymmetric
component of the beam. To demonstrate this we simulate a noise
free TOD using the elliptical Gaussian and the satellite-like scan
strategy. We plot the CMB used in the simulation smoothed with
the axisymmetric component of the beam in the top panel of Fig. 8.

The other three panels in this figure show the absolute error be-
tween this isoptropically smoothed map and a simple binned map
(second panel); and between the isoptropically smoothed map and
maps produced using the map making algorithm with kmax=2, 4
(lower two panels). The reduction in the bias due to beam asymme-
try as kmax is increased is clearly demonstrated by this figure.

We also tested the ability of the map making algorithm to re-
move the leakage from temperature to polarisation due to the asym-
metry of the beam. We performed this test using the approach de-
scribed in Section 5.2 which makes use of a previously estimated
temperature map obtained with the method described in Section 5.1
with kmax=4. In our simulation we have not included an input po-
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Removing beam asymmetry bias in CMB experiments 13

Figure 8. Top panel: The input CMB realization directly convolved with the axisymmetric component of the elliptical Gaussian beam used for the satellite-like
simulation. Second panel: The absolute residuals between the isotropically smoothed map shown in the top panel and the simple binned map constructed
from the simulated TOD. Lower two panels: The absolute residuals between the isotropically smoothed map shown in the top panel and maps made using
the algorithm described in Section 5 with kmax=2, 4. The residuals in the kmax=4 case (bottom panel) are comparable with the numerical noise of our
convolution code.
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Figure 1: Top: We plot the input S( ) described by equation (8) along with the observed points with

crosses. The dashed line shows the reconstruction if k
max

=2. Bottom: the error on the reconstruction

when k
max

=2, 4 in stars and crosses. The reduction in error is evident.
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Summary

• New map making algorithm to create maps 
clean of asymmetry bias.

• For full description see Wallis et al. 2014 on 
the arXive 1401.2075


