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Motivation
• Boson stars are self-gravitating configurations of bosons at zero 

temperature. 

• They are usually called self-gravitating Bose-Einstein condensates 

• This would also mean that: 

• Self-gravitating configurations must exist, which would be in thermal 
equilibrium, and that should be able to condensate at low enough 
temperatures. 

• Were first studied in the seminal paper by Ruffini & Bonazzola, PR (1967) 

• Relativistic: Einstein-Klein-Gordon equations (complex field) 

• Non-relativistic: Schrödinger-Poisson equations
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Boson Stars 
(Newtonian approach)

• Equations of motion for equilibrium configurations: 

!

!

• Normalization of the wavefunctions: 

• Mass density: 

• Particle number: 

• Conservation of the total particle number:
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Thermal Boson Stars 
(Newtonian approach)

• Equations of motion for equilibrium configurations: 
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• Normalization of the wavefunctions: 

• Mass density: 

• Particle numbers: 

• Conservation of the total particle number:
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Multi- state configurations!
Matos & U-L, GRG (2007) 
Bernal et al, PRD (2010) 

U-L & Bernal, PRD (2010)



What must we expect?
• All states are initially populated, and 

their population is uniquely 
determined by the temperature T, 
the total particle number N, and the 
trapping potential. 

• The energy levels are fixed by the 
trapping potential, and remain fixed 
all throughout. 

• There is a critical temperature 
below which the ground state is 
massively populated. 

• This is exactly the famous Bose-
Einstein condensation
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High T ———-> Low T
BEC, Wikipedia



What must we expect?
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Bose-Einstein condensation of an ideal gas
Thermodynamic limit

Chemical potential for ρph > ζ(3/2):

βµ = −0

Number of particles for ρph > ζ(3/2):

N = N0 + V
λ3

T
ζ(3/2)

Number of zero-energy particles for
ρph > ζ(3/2):

N0 = N − V
(

mkBT
2π!2

)3/2
ζ(3/2)
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Cold gases 2009 – p.5
Finite particle number effects !
vs standard textbook approx.

• All states are initially populated, and 
their population is uniquely 
determined by the temperature T, 
the total particle number N, and the 
trapping potential. 

• The energy levels are fixed by the 
trapping potential, and remain fixed 
all throughout. 

• There is a critical temperature 
below which the ground state is 
massively populated. 

• This is exactly the famous Bose-
Einstein condensation

Thorsten Köhler, DPA, University College London



What did we find?
• All states are initially populated, and 

their population is uniquely 
determined by the temperature T, 
the total particle number N, and the 
trapping gravitational potential. 

• The energy levels are not fixed by 
the trapping gravitational potential, 
and do not remain fixed afterwards. 

• There is a critical temperature 
below which the ground state is 
massively populated. 

• This is exactly the gravitational 
Bose-Einstein condensation

!7

Fugacity vs the temperature, !
for different number of states
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What did we find?

!8

Particle number vs the temperature, !
for different number of states

• All states are initially populated, and 
their population is uniquely 
determined by the temperature T, 
the total particle number N, and the 
trapping gravitational potential. 

• The energy levels are not fixed by 
the trapping gravitational potential, 
and do not remain fixed afterwards. 

• There is a critical temperature 
below which the ground state is 
massively populated. 

• This is exactly the gravitational 
Bose-Einstein condensation
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What did we find?
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Particle number vs the temperature, !
for different number of states
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• All states are initially populated, and 
their population is uniquely 
determined by the temperature T, 
the total particle number N, and the 
trapping gravitational potential. 

• The energy levels are not fixed by 
the trapping gravitational potential, 
and do not remain fixed afterwards. 

• There is a critical temperature 
below which the ground state is 
massively populated. 

• This is exactly the gravitational 
Bose-Einstein condensation



Conclusions
• We have found, for the first time, numerical solutions for the BEC 

transition of a bunch of self-gravitating bosons. 

• There are strong indications of a sharp phase transition for the 
formation of the BEC. 

• Interestingly enough, the critical temperature does depend only 
upon the total particle number. 

!

• There are indications that equilibrium configurations must be stable. 

• Leftover: Would it be useful to describe rotation curves in scalar 
field galaxy halos?
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Low & High Temperatures
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• Low:!

!

!

• Chemical potential: 

!

• Ground-state configuration! 

• Scaling properties:
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Ground-state boson stars!
 are stable!



Low & High Temperatures
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• High:!

!

!

• Chemical potential: 

!

• Multi-state configuration! 

• Scaling properties:
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Multi-state boson stars!
 are stable if excited states!

are less populated than !
the ground state



What is the critical 
temperature?

• The equations of motion have the same scaling 
properties at high & low temperatures. 

!

• This means in particular that: 

• … but this property should also hold for the critical 
temperature. From our numerical experiments 
we find that:


