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Modified Gravity Theories:

o large scales modification of gravity;

@ no exotic particle but change in gravitational
action;

@ must reproduce small scales gravity behavior and
a matter domination epoch.
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Dark Energy . . .
ElaEl Cosmological Constant shows issues, known as fine

state:

tuning and coincidence
1 _ y
R —1giR = 8rGT!

Scalar Field Theories:

o unknown field (or fields) responsible for
acceleration;

0 evolution driven by a potential (thawing or
freezing models);

o requires a mechanism that explain coincidence.
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Correlations

Dark Energy
equation of

state:

We are trying to reconstruct we using probes that
depend from an intfegrated value of this quantity:
wi w2 w3

obs source

this implies that the covariance matrix between
different values of wg is not diagonal:

C=<ww/>—<w><wl>
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e Dealing with correlations: Principal Component

equation of

state: Analysis
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Bayesian analysis

el \We use cosmomc package with PPF camb version to

equation of

state: determine pdfs for

{Qbh27 QCh27 H07 n37 A37 W/}
using a flat prior on w; € [—3.5;0.33]:

Analysis o
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W7+SNLS+BAO

ruN 1= spss-dr7 at 2=0.20,0.35 - Wigglez at 2=0.44.0.60,0.73
FUN2= 6dFGRS at z=0.10 - WiggleZ at z=0.44,0.60,0.73
Results

rUN3= wigglez at 2=0.44,0.60,0.73

FUN4= 6dFGRS at 2=0.10 - SDSS-dr7 at z=0.20,0.35 - WiggleZ at 2=0.44,0.60,0.73

Said et al.-Phys.Rev.D88:043515
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Results of the analysis
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state:
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A qualitative comparison

Dark Energy

equation of
state:
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Only a qualitative comparison, must check that perturbation evolution is not strongly modified but
can be assumed classical

95% credible intervals Said et al.-Phys.Rev.D88:043515




Conclusions

Dark Energy
equation of

state:

o cosmological constant is inside the 95%
confidence limit;

o lower values of we seem to be preferred at lower
redshift;

o qualitative comparison can limit parameter
spaces for different DE models.




Future work

Dark Energy
equation of
state:

o new datasets for SNIa, BAO and CMB;

o CMB shift parameters to perform quantitative
analysis for modified gravity scenarios;

o forecasts of the impact of future sky surveys.
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Cosmological Constant

Dark Energy

Cosmological constant

equation of
state:
Najla Said S K d4 R 2 S 87
— — —_ .6
= K [ d*xy=g(R-2N)+Spn
<= 04
2 _81G.  k , A 3|z
H="5r"a"s p
0.1
We = | 0‘071() 5 0 5 10

log q(a)
Amendola&Tsujikawa, 2010.

Conclusions
Problems

o fine-tuning— on ~ 107 GeV* < pyoe ~ 1074Ge V4

o coincidence—s O(pn) = O(pm)
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THAWING FREEZING
V(¢) x Vg + ag” V(¢) xag™"

Po=30"=V(9)  pe =36+ V(9)

_ $#°-2V(9)

€T §212V(e)

Kallosh, 2003; Linder, 2003; Linder, 2008; Doran&Robbers, 2006; Wetterich, 2007; Amendola, 2008.
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f(R), f(T), f(G) MODELS

HIGHER DIMENSIONS
MODELS

Linder, 2004; Cognola, 2006; Ferraro, 2011; Rubin, 2009; Deffayet, 2002; Dvali, 2000.
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N

Gravitational Potontial #(2)
\
\
\

Linder- 2001

f(R), f(T), f(G) MODELS S= L ey D0 + 5
HIGHER DIMENSIONS =L -
MODELS

Linder, 2004; Cognola, 2006; Ferraro, 2011; Rubin, 2009; Deffayet, 2002; Dvali, 2000.
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Dark Energy . . '
Qreusl SNla are defined as standard candles — recalibrating

the light-curves leads to A Ljax = cost

Lmax _ Zz az’
d, = \/Lma al(2) = ao(1 + 2 J5 3% 15%)
1/2
E= ij) = Q007 + Qmoa ™3 + Qo o el —30+we) ¥ |, g2

Conclusions 9000

d_L [Mpc]
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Barionic Acoustic Oscillations

BAO are defined as standard rulers — The 2-points
correlation function shows a peak at a comoving
separation equal to the sound horizon.

da = da(z) = (1+z (fO GocHo C(iz))

S=1PN

1/2

E="H2a — Q 00~ 4 Qm 0d~ 34+ Qe geJO —3(+we) P +QkG

2000

1500

d_A[Mpc]

1000
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el CMB shows temperature anisotropies — linked to the

state:

length of density perturbation at decoupling




Cosmic Microwave Background

Pl C\VIB shows temperature anisotropies — linked to the

equation of

et length of density perturbation at decoupling

s(7 _ 0p(N)

5(k) = A [ d®rs(7)exp[—ik - T]

— 1 / 2
Ci = @y 2m=—i |9m|

P(k) = [ d®re(r)expl—ik - T)

12000
w=-1
=0 ==
10000 "\
{
/
8000
|
o 6000 |
= N
400 i A
/ VA A
0!/ /)
2000 4 4 v K/\\( .
TN
S———
0 —
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Other probes: Cosmic Chronometers

Dark Energy
equation of

state: State of art

H(z) [km Mpc-!

B
Redshift

Moresco, 2012.

o expansion rate from differential evolution of
massive early-type galaxies;

o bias from degenerate parameters reduced by the
differential quantity;

o different methods to estimate age for galaxies.




Crossing the Phantom Divide

Dark Energy . ’
Pl |n DE comoving coordinate system

state:

6p" = dpe + 3Pe%§ N L e
_ Pe Ue
op" = dpe + 3,7;9%17,4

Fang, 2008.
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Dark Energy . . .
Sl |n DE comoving coordinate system, the conservation

state:

of momentum (pele) = T° yelds

(") = d/din(a) = %p.

5pf = 5[)9 + 3pe% ky = k/aH T
A = grav pot a.g.
op" = 6pe + Spepe I oo 2
X o

up =3(we + 2 - %Z = ) Ue + kuCZse + (1 + we)kyA

Conclusions

Fang, 2008.
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Crossing the Phantom Divide

Dark Energy . . .
Sl |n DE comoving coordinate system, the conservation

state:

of momentum (pele) = T° yelds

p u (") = d/din(a) 5, =20
6p" = 6pe + 3peg? o e
B B =space time piece §gy, 1 a.g

o pe A= goveotag H, =space space piece &. a.
0p" = 0pe + 35 peie o By MTeemmecemesdou oo
H s = Sp o =1—3K/K

up =3(we + 2 - %Z = ) Ue + kuCZse + (1 + we)kyA

54 +3(c? — we)de +9(cZ — %Z) 7 = Kite — (1 + we)(kyyB + 3H])

ckk?® = 4xGa? 3, pi6!

/ -~ . .
we = —1= B2 — 0o = de diverges if ¢ = cost
e
Fang, 2008.
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PPF Prescription

el 2 caon be variable in multifield theory w(a) is difficult

state:

tfo compute in these conditions

This can be solved working in the PPF framework

@ momentum and density components within a
unified dynamical variable

2
r= “gf;; px(8x + By /ky) — @

Q first closure relation makes the anisotropic stress
vanish
second closure relation relates matter and dark
energy momentum densities, making the latter be
smooth under a given transition scale

Hu&Sawiki, 2007.
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state: ¢? can be variable in multifield theory w(a) is difficult
to compute in these conditions

This can be solved working in the PPF framework

TIR.000005

@ momentum and density components within a t 00005\ \|
unified dynamical variable \Y

KMpe-1=0.003™
\

2
r= 4;(;2’ px(8x + 3ux /ky) — &
Q first closure relation makes the anisotropic sfress o e Ew0n \
vanish ; |

Scalar fields

second closure relation relates matter and dark 001 0.1
energy momentum densities, making the latter be @
smooth under a given transition scale

Hu&Sawiki, 2007.
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to compute in these conditions

This can be solved working in the PPF framework

4 V4
2 //
@ momentum and density components within a z /
unified dynamical variable 7
2 ~——T— L
T = 420 oy (Sx + 3ux/ky) — @ , R
cyk 10
Q first closure relation makes the anisotropic stress
vanish 50005
second closure relation relates matter and dark ?mmt,

energy momentum densities, making the latter be -
smooth under a given fransition scale 10

Hu&Sawiki, 2007.
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o the uncorrelated parameter are now g = wO
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weights that tells us how the g’s relate to w's;




Principal Component Analysis

kil This methodology is called PCA, and we will follow the

state:

procedure shown by Huterer&Starkman-2008:

o compute Fisher matrix F = C~';

o find eigenvalues and eigenvectors for F, so that
F = O'AO, with A diagonal;

o the uncorrelated parameter are now g = wO
(principal components) and the row of O are the
weights that tells us how the g’s relate to w's;

o we chose another weight matrix here, WTW = F,
astosay W = F2, because it ends up with weights
nmostly positive, and we normalize every row to
unity;

@ we can compute this weight matrix as
W = O'A2 0.




CMB shift parameters

Dark Energy
equation of

state: R _ /Qmng(Z*)/C

la = mr(z.)/15(2:)

0 = 10075(z.)/Da(z.)

where:
r(z+) — comoving distance to photon-decoupling surface
rs(z«) — comoving sound horizon at photon-decoupling epoch

Da(z«) — angular diameter distance to the photon-decoupling surface

Wang & Mukherjee, 2007
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