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we will only give a summary of the main results. 
Glad to discuss the details during this week! 



•   The model: 

   where we use the fact that any symmetric tensor can be written as 

   where 
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our initial motivation:  

introduce a mass m and deform GR in the infrared in a 
way which is fully covariant and does not require an 
external reference metric 



some sources of inspiration: 
•   Proca theory 

   is equivalent to  

•  degravitation 
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(Dvali 2006; Dvali, Hofmann, Khoury 2007; 
review  Hinterbichler 2012) 
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Cosmological consequences 

•  consider  

•  specialize to FRW in d=3. Define 

•  in FRW Sµ= (S0,0) , so we have 3 variables:  H(t), U(t),  S0(t) 



•  a final massaging of the eqs. 

     and their final form is   



•  there is an effective DE term, with 

•  define wDE from 
    then:    

•   at the level of background evolution, the model has the same 
number of parameters as ΛCDM, with ΩΛ ↔ γ. 



•  results.  

•  Fixing γ = 0.05.. (m=0.67 H0) we reproduce  ΩDE=0.68 
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•  having fixed γ we get a pure prediction for the EOS: 

fit w(x)=w0+(1-a) wa  in the region -1< x <0 

 best fit values:       w0= -1.042,   wa=-0.020 

   on the phantom side ! 

(general consequence of  
together with ρ>0 and  dρ/dt>0) 
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•  Planck+WP+BAO gives w0 = -1.04           , wa<1.32 

•   since we predict |wa|<<1, we can also compare with the  
Planck prediction for constant w 

      Planck+WP+SNLS:       w0 = -1.13                           (95% c.l.) 

      Planck+WP+Union2.1   w0 = -1.09 ± 0.17                (95% c.l.) 

+0.72 
-0.69 

+0.13 
-0.14 



Consistency issues 
•  no issue of ghost-induced vacuum decay. The non-local 

eqs must be understood as an effectve classical eq for 
the in-in quantum expectation values, and not as the eq 
of motion of a fundamental non-local QFT  

•  no vDVZ discontinuity. Solar system tests  passed 
•  No strong classical non-linearities at short distances. 

Corrections to the Schwarzschild solutions are 
1+O(m2r2) 

•  cosmological perturbations are being worked out 



Conclusions 

•  we have an interesting IR modification of GR 

•  and a testable prediction for the dark energy 
EOS 



Thank you! 



A locality / gauge-invariance duality  
for massive gauge fields 

•  Example: Proca theory for massive photons 

•  non-local formulation      (Dvali 2006; Dvali, Hofmann, Khoury 2007) 

    Stueckelberg trick: 

   add one field and gain a gauge symmetry 
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If we choose the unitary gauge  φ=0 we get back to the original 
formulation of Proca theory (and loose the gauge sym because of 
gauge fixing). 

Instead, keep the gauge sym explicit and integrate out φ using its 
own equation of motion: 

'(x) = �m�⇤�1(@µAµ)



  we have explicit gauge invariance for the massive theory, 
   at the price non-locality 

•  a sort of duality between explicit gauge-invariance and 
explicit locality 

•  we can fix the gauge                        and the non-local term 
disappears (and we are back to Proca eqs.)   

•  with hindsight, the Stueckelberg trick was not needed 

Substituting in the eq of motion for  Aν :   
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the original idea: write the linearize Fierz-Pauli theory in 
non-local form to preserve linearized diff, and covariantize 
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restores inv under 

eq of motion for Aν:  

 α undetermined (peculiar of FP) 

Dvali, Hofmann, Khoury (2007) 



•  in QED, we found that a massive deformation of the theory is 
obtained replacing 

•  for gravity, a first guess for a massive deformation of GR could 
be 

     however this is not correct since  

    We would lose energy-momentum conservation.  



6 d.o.f: massive spin 2 + 1 scalar ghost linearized Ricci scalar 

The field N (which is basically the longitudinal mode of Aµ ) acts as a Lagrange  
multiplier.  

At the linearized level it kills the ghost. 

However, if  we covariantize the theory, it imposes the condition R=0, which is not  
present in GR ⇒ a fully covariant vDVZ discontinuity !     (Porrati 2002) 



•  to understand the properties of the theory we linearize over 
Minkowski space:  in d spatial dimensions 

      the corresponding Lagrangian is (only formally! see later) 

      we add a gauge fixing and we get the propagator 



•  no vDVZ discontinuity! 
•  For m=O(H0), solar system test easily passed. Corrections are 
    O(m2/k2) =10-30 for k=(1 a.u)-1. 
•  massless graviton + extra contribution to  

    one massles scalar + one massive scalar ghost ? 



The ghost  
a ghost has in principle two type of effects: 

•  at the classical level, it can give rise to runaway solution. 
     for a ghost with m=O(H0) this can even be welcome for 

explaining the acceleration of the Universe  

•  at the quantum level, it produces a vacuum decay rate,  Γ  
                                   for a ghost interacting gravitationally with local 
                                           interactions: 

ψ

φ

g

φ

ψ



Non-local QFT or classical effective equations? 

•  we have           directly in the EoM (rather than in the solution). 
This EoM cannot come from the variation of a Lagrangian. E.g.   

•  we can repalce                       after the variation, as a formal trick 
to get the EoM from a Lagrangian.  

    However, any connection to the QFT described by this 
Lagrangian is lost. 
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  Taking  

    as the quantum Lagrangian of our problem introduces spurious 
propagating degrees of freedom. In  

   the apparent ghost-like pole in the propagator already comes with 
a retarded prescription. It is not a Feynman propagator and does 
not describe a propagating dof! 

    Our non-local EoM is not the classical EoM of a non-
local QFT! 



    EoMs involving         emerge from a classical or a 
quantum averaging of a more fundamental (local) QFT 

•   classically, when separating long and short wavelength and 
integrating out the short wave-length  
    (e.g cosmological perturbation theory, or GWs) 

•   in QFT, when computing the effective action that includes the 
effect of radiative corrections. This  provides effective non-
local field eqs for 

•   the in-in matrix elements  satisfy non-local and retarded 
equations            

⇤�1
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Jordan 1986, Calzetta-Hu 1987 



•  So, we interpret our non-local eqs as a classical, effective 
equation, derived from a more fundamental local theory by a 
classical or quantum averaging  

•  any problem of quantum vacuum stability can only be 
addressed in this fundamental theory 

•  in any case, the apparent ghost that we found has nothing to do 
with quantum vacuum decay in our model.  

    It can however trigger classical cosmological instabilities 



A fake ghost in massless GR 

S

(2)
EH =

1

2

Z
d

d+1
xhµ⌫Eµ⌫,⇢�

h⇢�

hµ⌫ = hTT
µ⌫ +

1

2
(@µ✏⌫ + @⌫✏µ) +

1

d
⌘µ⌫s

S

(2)
EH =

1

2

Z
d

d+1
x


h

TT
µ⌫ ⇤(hµ⌫)TT � d� 1

d

s⇤s

�

It looks as if there are many more propagating d.o.f 
Furthermore s seems a ghost ! 
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•  the origin of the problem is that s is a non-local function of hµν : 

•  example: 

 it looks as if we have generated a dynamical dof!  
 However,  the solution of the homogeneous eq are spurious! 

     the same happens for s:   s is non-radiative, and we must discard 
the solutions of the homogeneous eq 

•  at the quantum level, no annihilation/creation operators 
associated to it; s cannot be put on the external lines (otherwise, 
the vacuum in GR would decay!) 
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•  the same happens in our non-local theory. The extra term in 

     is just a mass term for s ! However, it remains a non-radiative 
field, as in GR, and we must discard the plane-wave solutions of 

again, no propagating dof associated to s, and no issue of quantum 
vacuum decay !  
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•  the local formulation introduces a spurious degrees of freedom,  
    given by Uhom(x).  We must be aware that, given a definition of 

the original non-local model, Uhom(x) is fixed (so also the initial 
conditions on U are fixed) 

•  in flat space, this spurious degree of freedom gives rise to plane 
waves, but there are no creation/annihilation operators associated 
to it 

    (it is another way to see that the apparent ghost is non-dynamical) 

•  the stability problem is different in the original non-local 
formulation and in the local one 



•  a degravitation mechanism 

     the localformulation of the model is invariant under 

     it is a sort of degravitation mechanism where a cosmological 
constant can be traded for the initial condition u0. However, this 
transformation connect different non-local theories 
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A more general class of models 

•  when we write                           we must define 
     In FRW me must invert  

    even after choosing the retarded Green's function we have the 
freedom of  specifying the solutions of  

    the possible definitions of the non-local model are in one-to-one 
correspondence with the initial conditions on U, S0  
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•  the initial conditions on U,S0 are fixed by the definition of the 
non-local operators. In general, the solution of                   is 

   we chose G=Gret but we must also specify fhom  
   In FRW,                                           and we define  

(with t* in RD), i.e. we choose Uhom=0. Then 

Later we will study the most general definition 
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•   the space of initial conditions: 
     recall that 

     where 

     in the early Universe we can neglect the contribution of Y to ζ 
      and write ζ(x)≃ ζ0            (-2 in RD, -3/2 in MD) 

     trade   {U,U',Y,Y'}(xin)    for      {u0,u1,a1,a2} 

        u0= marginal direction        u1,a1,a2 =decaying directions 
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•  we can forget about u1, a1,a2 and the most general modification 
of the model amounts to including u0.   

    This means that we now define 

   inserting this into 

   we get a cosmological constant!! 

   in d=3, 
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•  effect of u0 on the evolution: 

    (w0,wa) shift toward their ΛCDM values (-1,0), but w0 is always 
on the phantom side 
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u0= -10 
for u0 < uc ≃ -12, no solution 
with γ Y(0) =0.68 
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•  the results for this class of models can be summarized by: 

•  w0 always on the phantom side: -1.33 < w0 < -1 
•  prediction of a precise relation wa = wa (w0) 

•  EUCLID nominal target:  Δw0=0.01, Δwa=0.1 
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future directions 

•  understanding what fundamental theory is behind 
these effective classical eqs 

•  cosmological perturbations  

•  structure formation 


