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Introduction: Newtonian simulations in Relativistic regimes

I N-body simulations of Large Scale
Structure (LSS) assume Newtonian
gravitational interactions reaching great
acuracy

I Poisson Equation is the only Field Eqn.

r2�N = 4⇡Ga2⇢̄�N

I Simulation volumes are reaching the
Hubble scale,
where GR e↵ects are expected:
When v/c . 1 ) r/t . 1 )

r2/H2 . 1

I How can we make N-body
simulations compatible with
General Relativity?

Newtonian Framework (Fluid Approximation)

I Newtonian Quantities:
Matter density ⇢N := ⇢̄ [1 + �N(x, ⌧ )] ,
Particle velocity uiN(x, t) := xiH + @ ivN,
Total Energy EN := ĒN + �EN(x),

I Newtonian Equations:
. Continuity Eqn. d

d⌧ (�N) = �(1 + �N)r2vN ,
. Euler Eqn. d

d⌧

�r2vN
�
+ Hr2vN + @ i@kvN@k@ivN + r2�N = 0 .

I + Poisson Eqn. ) Evolution Equation

�00N + H�N
0 � 3

2
H2⌦m�N =

�
�Nr2vN

�0 � 2H�r2vN + 2@ i@jvN@
j@ivN

And an Energy Constraint, preserved in time:

r2EN(x) =
1

2
r2u2N � 4⇡Ga2⇢N . (1)

Relativistic Description of dust in FRW

I Metric (Synchronous-Comoving):

ds2 = a2(⌧ )
��d⌧ 2 + {exp[�2Rc]�ij + �ij} dxidxj

�
, (2)

I Comoving Density⇢c := ⇢̄ [1 + �c(x, ⌧ )] ,
I Deformation #µ

⌫ := a(⌧ )@µu⌫ � H�µ⌫ ,
I Ricci Curvature R := exp(2Rc)

⇥
4r2Rc � 2(rRc)2

⇤
.

Relativistic Equations:
I Continuity Eqn. d

d⌧ (�c) = �(1 + �c)# ,

I Raichaudhuri Eqn. #0 + H# + #i
j#

j
i + 4⇡Ga2⇢̄�c = 0 .

) Evolution Equation

Same as the Newtonian evolution
Provided we use the correspondence [1,2]:
. Newtonian speed with Deformation: @ i@kvN = #i

k
. Newtonian density with Comoving density: �N = �c
. Newtonian energy with Spatial curvature: 4r2�EN(x) = �R

Where is the di↵erence in a ⇤CDM Universe?

I Newtonian Energy Constraint:

4Hr2vN � 16⇡Ga2⇢̄�N + R(x) = 0,

I Relativistic Energy Constraint (Synchronous-Comoving):

#2 � #i
j#

j
i � 16⇡Ga2⇢̄�c + 4H# + R = 0 .

Exact correspondence at linear order

We choose a perturbative expansion, valid for �c ⌧ 1. Every quantity is
expanded as

A(x, ⌧ ) = Ā(⌧ ) +
1X

n=1

1

n!
A(n)(x, ⌧ ), (3)

I Curvature sources density via the growing mode D+, also d/d⌧ (R(1)
c ) = 0.

I At first order both Newtonian and Relativistic constraints are equivalent[3].
. At early times ⌧IN In dust-dominated Universe ⌦m(⌧IN) = 1 and

�(1)(x, ⌧ ) =
2

3

r2�N

H2
=

2

5

r2R(1)
c (x)

H2(⌧ )
=

1

10

R(1)

H2(⌧ )
. (4)

. At late times we define f1 = d/d⌧ ln(D+)H�1 and both theories dictate

�(1)(⌧, x) = r2R(1)
c (x)


3

2
+

f1(⌦mIN)

⌦mIN

��1 D+(⌧ )

H2
IND+IN

Higher order GR corrections initial conditions (Our work!)

The full GR solution initial conditions 6= to Newtonian. Most importantly, at
large scales, gradients are small and we can compute the curvature R from
only the conformal part of the spatial metric in (2), that is:

I The Conformal curvature can be computed at any order[4]:

R = 4r2Rc �
1X

m=0

(2)m+1

m!


(rRc)

2 +
4

m + 1
Rcr2Rc

�
(Rc)

m

I The solution at large scales (lowest order in gradient expansion) takes the
same form as the linear solution (4), i.e., at early times and large scales [5,6]

�(n)(x, ⌧ ) =
1

10

R(n)

H2(⌧ )
. (5)

This yields, at any order in perturbative expansion, the dominant GR
contribution to the matter density fluctuation.

Results: GR induces non-Gaussianity in LSS

Curvature perturbations may have been sourced at non-linear order from
inflation. Non-linearity implies interaction between di↵erent (Fourier) modes
which breaks the Gaussian hypothesis. In the local limit (squeezed
configurations), the non-Gaussian parameters fNL and gNL quantify the mild
non-linearity of the curvature perturbation as (c.f. Eq. (3)):

Rc = R(1)
c +

1

2
R(2)

c +
1

6
R(3)

c = R(1)
c +

3

5
fNL(R(1)

c )2 +
9

25
gNL(R(1)

c )3

Our result for the non-linear �(n) in Eq. (5) shows that non-linear

correlations in the matter density field carry an e↵ective non-Gaussianity

from General Relativity. In short, GR induces the following e↵ective

non-Gaussianities in the local limit [5,6],

fGRNL = � 5

3
gGR
NL =

50

27
� 10

3
fNL

Summary and Future work

I We found non-linear correlations (Non-Gaussianities) induced by General
Relativity in the matter distribution of a ⇤CDM Universe.

I We propose to include these results in the non-linear initial conditions of
N-body simulations and also take them on account in the measurement of
non-Gaussianities from the LSS.
. The featured results modify the implementation of the Zel’dovich
approximation and the second order lagrangian fluctuations (2LPT). Work

in progress

I The evolution of inhomogeneities is a function of the initial geometry [5].
. The correspondence of perturbations with inhomogeneous cosmologies with
spherical and non-spherical symmetries quantify the di↵erence in the
non-linear regime. Work in progress
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