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SNe Ia as tools Bayes - Internal Robustness Method Results Outlook

SN Ia as cosmological probes - where to improve?

increasing number of SNe & large number of effects:

→ systematic errors start dominating the overall error
→ in need of purely statistical analysis methods

which are able to
I investigate systematic effects
I detect correlations

with the aim to
I pin-point subsets of contaminated data
I search for astrophysical/cosmological information
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SNe Ia as tools Bayes - Internal Robustness Method Results Outlook

What is robustness?

robustness = consistency among subsets

Is there any subset statistically incompatible with others?
→ likelihood contours shift and change size
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SNe Ia as tools Bayes - Internal Robustness Method Results Outlook

Internal Robustness

Bayesian comparison of 2 hypothesis:
one set of parameters⇔ two independent distributions

Bayes’ ratio:

Btot ,ind =
E (d;MC)

E (d1;MC)E (d2;MS)

d = full set, subsets d1 and d2, with d1 + d2 = d
independent models MC and MS

Internal Robustness:

R ≡ logBtot ,ind

Amendola, Quartin, Marra (arXiv:1209.1897)
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Internal Robustness
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Internal Robustness probability distribution function
(IR-PDF)

parametrization choice of observable & partitioning of data
↓

evaluate R − value for each chosen partition
↓

IR − PDF

complete scan of all subsets impossible
→ IR-PDF will depend on chosen partitions!
→ IR-PDF for mock catalogues to test significance
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Our partitioning (arXiv:1310.8435) of Union2.0/2.1

I angular separation
I z-binning
I survey-wise
I hemispheres

arXiv:1310.8435: Heneka, Marra, Amendola
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Internal Robustness probability distribution function:
separation sorted

→ agreement within 2σ!
→ no significant effects depending on angular separation
→ similar for z-binning and survey-wise analysis

arXiv:1310.8435: Heneka, Marra, Amendola
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Hemispherical directions

single partition (Planck) (α, δ) Significance

Hemispherical asymmetry (270◦,66.6◦) 1.26σ

Dipole anisotropy (167◦,−7◦) 0.39σ

Quadrupole-octupole
alignment (177.4◦,18.7◦) 0.35σ

Grid of hemispheres

Direction of lowest
robustness

(150◦,70◦) 2.20σ

arXiv:1310.8435: Heneka, Marra, Amendola
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Preliminary: analysis of distance modulus errors

analysis applicable to any observable!
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polynomial model for errors, lognormal distribution for mocks
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Preliminary: distribution of minimal robustness values

analysis of errors for 105 random partitions
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Take-away

advantages
I no specific effect assumed
I fully Bayesian approach

application
I improve understanding of systematics and correlations
I find most probable systematics-contaminated data

future
I test dependencies on SN and host galaxy properties
I applicable to other data than SNe

quite robust, but still room for improvement!
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Extra slide: Distance modulus errors

I systematic parametrization: m(z) =
∑

i λi ∗ z i

I lognormal assumption for synthetic catalogues
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Extra slide: Distribution of most and least robust SNe
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