Unified description for quintessence fields

Luis Ureña
Department of Physics, University of Guanajuato
(arXiv:1108.4712)
Quintessence (Dark Energy)

- **Accelerating solutions** in a Friedmann-Robertson-Walker universe from scalar fields are well known from inflationary theories.

- **All we need is an appropriate scalar potential**, and good conditions for late-time domination, after the required transitions: radiation -> matter -> dark energy

- **Proposal**: The physically relevant solutions are represented by heteroclinic lines connecting critical points on the phase-space of the field variables.
Dynamical structure

Full equations of motion in a FRW universe with a matter perfect fluid + quintessence field:

\[
\begin{align*}
\dot{H} &= \frac{8\pi G}{2} \left(\gamma \rho_\gamma + \dot{\phi}^2 \right) \\
\dot{\rho}_\gamma &= -3H \gamma \rho_\gamma \\
\ddot{\phi} &= 3H \dot{\phi} - \partial_\phi V \\
H^2 &= \frac{8\pi G}{3} \left(\rho_\gamma + \frac{1}{2} \dot{\phi}^2 + V \right) \\
p_\gamma &= (\gamma - 1) \rho_\gamma \\
\end{align*}
\]

Dynamical variables:

\[
\begin{align*}
x &\equiv \frac{\kappa \dot{\phi}}{\sqrt{6H}}, \quad y \equiv \frac{\kappa \sqrt{V}}{\sqrt{3H}}, \quad \lambda = -\partial_\phi V/V, \quad N = \ln(a)
\end{align*}
\]

Quintessence physical parameters:

\[
\begin{align*}
\gamma_\phi &= \frac{p_\phi + \rho_\phi}{\rho_\phi} = \frac{2x^2}{x^2 + y^2}, \quad \Omega_\phi = \frac{\kappa^2 \rho_\phi}{3H^2} = x^2 + y^2 \\
\text{Density parameter}
\end{align*}
\]
Dynamical structure

* New equations of motion:

\[
\begin{align*}
x' &= -3x + \lambda \sqrt{\frac{3}{2}y^2 + \frac{3}{2}x [2x^2 + \gamma(1 - x^2 - y^2)]}, \\
y' &= -\lambda \sqrt{\frac{3}{2}xy + \frac{3}{2}y [2x^2 + \gamma(1 - x^2 - y^2)]}, \\
\lambda' &= -\sqrt{6x\lambda^2[V\partial\phi V/(\partial\phi V)^2 - 1]}
\end{align*}
\]

* Phase-space structure

Critical points: points in phase space at which the phase velocity vanishes;

Heteroclinic lines: trajectories in the phase-space that connect two critical points.
Critical points: points in phase space at which the phase velocity vanishes; A, B, C, D

Heteroclinic lines: trajectories in phase space that connect two critical points; I, II, III, IV, V

Copeland, Liddle, Wands
Dynamical structure (Exponential case)

- **Critical points**: points in phase space at which the phase velocity vanishes; A, B, C, D, E

- **Heteroclinic lines**: trajectories in phase space that connects two critical points; I, II, III, IV, V, VI

Copeland, Liddle, Wands
PRD 57, 4686 (1998);
U-L, arXiv:1108.4712
Dynamical structure (Exponential case)

- **Critical points**: points in phase space at which the phase velocity vanishes; A, B, C, D, E

- **Heteroclinic lines**: trajectories in phase space that connects two critical points; I, II, III, IV

Copeland, Liddle, Wands
Because of the long matter-dominated period, appropriate initial conditions correspond to phase-space points nearby the matter-dominated point A; late-dynamics of the quintessence field is influenced by this fact and its evolution must not start arbitrarily.

Flow parameter
(Cahn, de Putter, and Linder
JCAP 0811, 015, 2008)

\[F = \frac{\gamma \phi}{\Omega \phi \lambda^2} \simeq \text{const} \]
Because of the long matter-dominated period, appropriate initial conditions correspond to phase-space points nearby the matter-dominated point A; late-dynamics of the quintessence field is influenced by this fact and its evolution must not start arbitrarily.

Thawing constraint

Because of matter-domination, the quintessence field follows the phase-space trajectory:

\[x(y) = \frac{2}{2 + \gamma \sqrt{6}} y^2 \]

In terms of the flow parameter:

\[F = \frac{4}{3(2 + \gamma)^2} \]
Because of the long matter-dominated period, appropriate initial conditions correspond to phase-space points nearby the matter-dominated point A; late-dynamics of the quintessence field is influenced by this fact and its evolution must not start arbitrarily.

Thawing constraint
Because of matter-domination, the quintessence field follows the phase-space trajectory:

$$x(y) = \frac{2}{2 + \gamma \sqrt{6}} y^2$$

In terms of the flow parameter:

$$F = \frac{4}{3(2 + \gamma)^2}$$
Dynamical structure

- The physically relevant dynamics is then represented by the heteroclinic line departing from the (unstable) critical point A (perfect fluid domination).

Thawing constraint

Because of matter-domination, the quintessence field follows the phase-space trajectory:

\[x(y) = \frac{2}{2 + \gamma \sqrt{6}} y^2 \]

It is the heteroclinic line that departs from the critical point A (red line).
The physically relevant dynamics is then represented by the heteroclinic line departing from the (unstable) critical point A (perfect fluid domination).

Thawing constraint
Because of matter-domination, the quintessence field follows the phase-space trajectory:

\[x(y) = \frac{2}{2 + \gamma \sqrt{6}} y^2 \]

It is the heteroclinic line that departs from the critical point A (red line).
General Dynamics: Freezing

The roll-parameter decreases as the universe expands.
The roll-parameter decreases as the universe expands.

It is the heteroclinic line that departs from the critical point A (red line).
GENERAL DYNAMICS: Freezing

The roll-parameter decreases as the universe expands

Large initial values of the roll parameter are not allowed by observations.
General Dynamics: Thawing

- The roll-parameter *increases* as the universe expands

\[\lambda = 2 \]

Projection onto the 2D phase space
GENERAL DYNAMICS: Thawing

The roll-parameter increases as the universe expands

\[\lambda_i = 2 \]

It is the heteroclinic line that departs from the critical point A (red line)

Projection onto the 2D phase space
The roll-parameter increases as the universe expands

\[\lambda_{i} = 2 \]

It is the heteroclinic line that departs from the critical point A (red line)
The roll-parameter *increases* as the universe expands

\[\lambda_i = 2 \]

Large initial values of the roll parameter are not allowed by observations

Heteroclinic trajectories under different initial conditions
Conclusions

The dynamics of dark energy scalar fields, for physically relevant solutions, is fully described by critical points and heteroclinic trajectories on the phase-space.

The viability of a given model is also easily determined by looking at its heteroclinic trajectories departing from the critical point of matter domination.

The phase space of any quintessence field is topologically similar to that of the exponential potential.

That physically relevant trajectories are also heteroclinic must be true for other models of dark energy (in terms of properly chosen phase variables) (conjecture).