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Abstract

Nonlinear electrodynamics, as a source of Einstein’s
equations, generates a cosmological model with a
phase of cosmic acceleration and without an initial
singularity, thus pointing to a way of solving two
important problems in cosmology.

We study the range of consistency of a model based in
a Born-Infeld Lagrangian using Supernovae Ia (SNe Ia)
and Gamma-Ray Bursts (GRBs).

We use the sample of 59 high-redshift GRBs reported by
Wei (2010), calibrated at low redshifts with the Union 2
sample of SNe Ia, thus avoiding the circularity problem.
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Introduction

Standard cosmological model

→Problems

The cause of the current acceleration stage

The initial singularity

→Proposal

The nonlinear electrodynamics can be useful in the
discussion of possible solutions to the two problems of
the standard cosmological model.
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Previous works

Novello et al. (2004)

S =

∫ √
−g
(
−F

4
+
γ

F

)
d4x, F ≡ FµνFµν (1)

Novello et al. (2007)

L = αF 2 − 1

4
F +

γ

F
(2)

Due to the isotropy of the spatial hyper-surfaces of the RW
geometry, an average procedure is needed if
electromagnetic fields are to act as a source of gravity.
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Instead to consider an EM field with a volumetric average,
we study a model proposed by Dyadichev et al. (2002) that
contains homogeneous and isotropic solutions supported by
the SU(2) gauge field governed by the Born-Infeld
Lagrangian.

The model starts with the action

S = − 1

4π

∫ {
1

4G
R+ β2(R− 1)

} √
−g d4x, (3)

where R is the scalar curvature, β is the BI critical field
strength, and the quantity

R =

√
1 +

1

2β2
F aµνF

µν
a −

1

16β4
(F̃ aµνF

µν
a )2,

corresponds to the square root or ordinary trace NBI
lagrangian.
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The model
The model deals with the homogeneous and isotropic
configurations of the SU(2) Yang-Mills field and considers RW
geometry.

→We shall consider the case of spatially flat geometry for
the RW cosmology

ds2 = dt2 − a2
[
dr2 + r2(dθ2 + sin θ2dφ2)

]
. (4)

In Dyadichev et al. (2002) it is obtained the reduced
action

S1 =
1

4πGβ

∫
dt

{
3

2
aȧ2 − ga3

[√
(1−K2)(1 + V 2)− 1

]}
,

(5)
where

K =

√
3ẇ

a
, V = −

√
3w2

a2
(6)

and g = βG is a dimensionless coupling constant.
Probing nonlinear electromagnetic cosmological models with GRBs. January 2012

7
/
16



Friedmann equations

ȧ2

a2
=

8πG

3
ρ, (7)

ä

a
= −4πG

3
(ρ+ 3p), (8)

with

p =
1

3
ρc
(
3− P − 2P−1

)
and ρ = ρc (P − 1) , (9)

p =
ρ

3

(ρc − ρ)
(ρc + ρ)

(10)

where ρc = β/4π plays a role of the BI critical energy density
and P is given by

P =

√
1 + V 2

1−K2
. (11)
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On the other hand, the gauge field influences the metric
only through the quantity P, related to the energy density.
This quantity obeys the differential equation:

Ṗ = 2
ȧ

a

(
1

P
− P

)
, (12)

and this last equation can be integrated once, giving P as a
function of a:

P =

√
1− κ

(a0
a

)4
, (13)

where κ is an integration constant.

The Friedmann equation turns out to be

H2 =
2g

3

[√
1− κ(1 + z)4 − 1

]
(14)
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Calibrating GRBs

Since the earliest evidence of tight correlations in
gamma-ray bursts spectral properties, the possibility arose of
using GRBs as standard candles. Being so GRBs may open a
window in redshift as far as z ∼ 8, extending then the
attainable range provided by SNe Ia observations.

Amati relation

We shall apply the empirical relation Ep − Eiso derived by
Amati (2008), that connects

Ep = Ep,obs(1 + z),

Eiso = 4πd2LSbolo(1 + z)−1.
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We calibrated the Amati relation for 50 GRBs low-redshift
(z < 1,4) using the 557 Union2 SNe Ia data following the
cosmology-independent calibration method proposed
by Liang (2008):

log
Eiso
erg

= λ+ b log
Ep

300keV
. (15)

With

λ = 52,7636± 0,0626, b = 1,6283± 0,1059. (16)

Extrapolating the calibrated Amati relation to 59
high-redshift GRBs, we obtained the distance moduli µ
for the extended sample of 59 GRBs at z > 1,4 using

Eiso = 4πd2LSbolo(1 + z)−1 and µ = 5 log
dL

Mpc
+ 25. (17)

For details of the calibration, see A. Montiel and N. Bretón, JCAP 08
(2011) 023.
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Data Analysis

The theoretical distance modulus is defined by

µth(z; a1, ..., an) = 5 log
dthL (z; a1, ..., an)

Mpc
+ 25. (18)

On the other hand, given a parametrization H(z; a1, ..., an)
depending on n parameters ai, the corresponding Hubble
free luminosity distance in a flat cosmology is

dthL (z; a1, ..., an) = c(1 + z)

∫ z

0
dz′

1

H(z′; a1, ..., an)
. (19)

Using the maximum likelihood technique we can find the
goodness of fit for the corresponding observed dobsL (zi).
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Data Analysis

The best-fit model parameters are determined by minimizing
χ2
µ(g, κ):

χ2
µ(g, κ) =

∑
i

[µobs(zi)− µth(zi, g, κ)]2

σ2µobs(zi)
. (18)
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Results

The best-fit value for the nonlinear electromagnetic
cosmological model parameters (g, κ) and the χ2

d.o.f. using
SNe Ia and SNe Ia + GRBs are summarized in the following
table:

SNe Ia SNe Ia + GRBs

g 5999.9993+59,9983
−49,9993 5999.9994+59,5110

−49,9994

κ -3.0742+0,0535
−0,0981 -3.0732+0,0535

−0,0981

χ2
d.o.f. 1.5647 1.6242

→ H0 =63.83 km s−1 Mpc−1
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We show the joint confidence regions in the (g, κ) plane for
the nonlinear electromagnetic cosmological model. The
contours correspond to 1σ-4σ confidence regions using SNe
Ia (left panel) and SNe Ia + GRBs (right panel).
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Conclusions

In this work, we presented how we can use the
calibrated sample of 109 GRBs in order to test a
cosmological model.

In particular, we studied a model based on a Born-Infeld
Lagrangian proposed by Dyadichev et al. (2002) that
considers homogeneous and isotropic configurations of
the SU(2) Yang-Mills field as the only matter source.

Probing this model with SNe Ia and SNe Ia + GRBs we
obtained as best-fit model parameters (g = 6000,
κ = −3,1):

H0=63.83 km s−1 Mpc−1

The BI critical field β turns out to be 9 ×1013 N−1 m−2 kg2.
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