Probing nonlinear electromagnetic cosmological models with GRBs.

Ariadna Montiel and Nora Bretón

Physics Department
Cinvestav

January 2012
Nonlinear electrodynamics, as a source of Einstein’s equations, generates a cosmological model with a phase of cosmic acceleration and without an initial singularity, thus pointing to a way of solving two important problems in cosmology.
Abstract

- Nonlinear electrodynamics, as a source of Einstein’s equations, generates a cosmological model with a phase of cosmic acceleration and without an initial singularity, thus pointing to a way of solving two important problems in cosmology.

- We study the range of consistency of a model based in a Born-Infeld Lagrangian using Supernovae Ia (SNe Ia) and Gamma-Ray Bursts (GRBs).
Nonlinear electrodynamics, as a source of Einstein’s equations, generates a cosmological model with a phase of cosmic acceleration and without an initial singularity, thus pointing to a way of solving two important problems in cosmology.

We study the range of consistency of a model based in a Born-Infeld Lagrangian using Supernovae Ia (SNe Ia) and Gamma-Ray Bursts (GRBs).
Abstract

Nonlinear electrodynamics, as a source of Einstein’s equations, generates a cosmological model with a phase of cosmic acceleration and without an initial singularity, thus pointing to a way of solving two important problems in cosmology.

We study the range of consistency of a model based in a Born-Infeld Lagrangian using Supernovae Ia (SNe Ia) and Gamma-Ray Bursts (GRBs).

We use the sample of 59 high-redshift GRBs reported by Wei (2010), calibrated at low redshifts with the Union 2 sample of SNe Ia, thus avoiding the circularity problem.
Abstract

Nonlinear electrodynamics, as a source of Einstein’s equations, generates a cosmological model with a phase of cosmic acceleration and without an initial singularity, thus pointing to a way of solving two important problems in cosmology.

We study the range of consistency of a model based in a Born-Infeld Lagrangian using Supernovae Ia (SNe Ia) and Gamma-Ray Bursts (GRBs).

We use the sample of 59 high-redshift GRBs reported by Wei (2010), calibrated at low redshifts with the Union 2 sample of SNe Ia, thus avoiding the circularity problem.
Introduction

The model
Outline

1 Introduction

2 The model

3 Calibrating GRBs
Outline

1. Introduction
2. The model
3. Calibrating GRBs
4. Data Analysis and Results
5. Conclusions
Outline

1. Introduction
2. The model
3. Calibrating GRBs
4. Data Analysis and Results
5. Conclusions
Introduction

Standard cosmological model

→ Problems

- The cause of the current acceleration stage
Introduction

Standard cosmological model

→ Problems

- The cause of the current acceleration stage
Introduction

Standard cosmological model

→ Problems

- The cause of the current acceleration stage
- The initial singularity
Introduction

Standard cosmological model

→ Problems

- The cause of the current acceleration stage
- The initial singularity
Introduction

Standard cosmological model

→ Problems

- The cause of the current acceleration stage
- The initial singularity

→ Proposal
Introduction

Standard cosmological model

→ Problems

- The cause of the current acceleration stage
- The initial singularity

→ Proposal

- The nonlinear electrodynamics can be useful in the discussion of possible solutions to the two problems of the standard cosmological model.
Introduction

Standard cosmological model

→ **Problems**

- The cause of the current acceleration stage
- The initial singularity

→ **Proposal**

- The *nonlinear electrodynamics* can be useful in the discussion of possible solutions to the two problems of the standard cosmological model.
Previous works

- Novello et al. (2004)

\[S = \int \sqrt{-g} \left(-\frac{F}{4} + \frac{\gamma}{F} \right) d^4x, \quad F \equiv F_{\mu\nu}F^{\mu\nu} \] \hspace{1cm} (1)

- Novello et al. (2007)

\[\mathcal{L} = \alpha F^2 - \frac{1}{4} F + \frac{\gamma}{F} \] \hspace{1cm} (2)
Previous works

- Novello et al. (2004)

\[S = \int \sqrt{-g} \left(-\frac{F}{4} + \frac{\gamma}{F} \right) d^4 x \quad F \equiv F_{\mu\nu}F^{\mu\nu} \quad (1) \]

- Novello et al. (2007)

\[\mathcal{L} = \alpha F^2 - \frac{1}{4} F + \frac{\gamma}{F} \quad (2) \]
Previous works

Novello et al. (2004)

\[S = \int \sqrt{-g} \left(-\frac{F}{4} + \frac{\gamma}{F} \right) \, d^4 x, \quad F \equiv F_{\mu \nu} F^{\mu \nu} \quad (1) \]

Novello et al. (2007)

\[\mathcal{L} = \alpha F^2 - \frac{1}{4} F + \frac{\gamma}{F} \quad (2) \]

Due to the isotropy of the spatial hyper-surfaces of the RW geometry, an average procedure is needed if electromagnetic fields are to act as a source of gravity.
Previous works

- Novello et al. (2004)

\[
S = \int \sqrt{-g} \left(-\frac{F}{4} + \frac{\gamma}{F} \right) d^4 x, \quad F \equiv F_{\mu\nu}F^{\mu\nu}
\] \hspace{1cm} (1)

- Novello et al. (2007)

\[
\mathcal{L} = \alpha F^2 - \frac{1}{4} F + \frac{\gamma}{F}
\] \hspace{1cm} (2)

Due to the isotropy of the spatial hyper-surfaces of the RW geometry, an average procedure is needed if electromagnetic fields are to act as a source of gravity.
Instead to consider an EM field with a volumetric average, we study a model proposed by Dyadichev et al. (2002) that contains homogeneous and isotropic solutions supported by the SU(2) gauge field governed by the Born-Infeld Lagrangian.

The model starts with the action

\[S = -\frac{1}{4\pi} \int \left\{ \frac{1}{4G} R + \beta^2 (\mathcal{R} - 1) \right\} \sqrt{-g} \, d^4 x, \]

(3)

where \(R \) is the scalar curvature, \(\beta \) is the BI critical field strength, and the quantity

\[\mathcal{R} = \sqrt{1 + \frac{1}{2\beta^2} F_{\mu\nu}^a F_{\nu\mu}^a - \frac{1}{16\beta^4} (\tilde{F}_{\mu\nu}^a F_{\nu\mu}^a)^2}, \]

corresponds to the square root or ordinary trace NBI lagrangian.
Instead to consider an EM field with a volumetric average, we study a model proposed by Dyadichev et al. (2002) that contains homogeneous and isotropic solutions supported by the SU(2) gauge field governed by the Born-Infeld Lagrangian.

The model starts with the action

\[
S = -\frac{1}{4\pi} \int \left\{ \frac{1}{4G} R + \beta^2 (\mathcal{R} - 1) \right\} \sqrt{-g} \, d^4x,
\]

(3)

where \(R \) is the scalar curvature, \(\beta \) is the BI critical field strength, and the quantity

\[
\mathcal{R} = \sqrt{1 + \frac{1}{2\beta^2} F_{\mu\nu}^a F_a^{\mu\nu} - \frac{1}{16\beta^4} (\tilde{F}_{\mu\nu}^a F_a^{\mu\nu})^2},
\]

corresponds to the square root or ordinary trace NBI lagrangian.
The model

The model deals with the homogeneous and isotropic configurations of the SU(2) Yang-Mills field and considers RW geometry.

We shall consider the case of spatially flat geometry for the RW cosmology

\[ds^2 = dt^2 - a^2 \left[dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \right] . \]

(4)

In Dyadichev et al. (2002) it is obtained the reduced action

\[S_1 = \frac{1}{4\pi G \beta} \int dt \left\{ \frac{3}{2} a \dot{a}^2 - g a^3 \left[\sqrt{(1 - K^2)(1 + V^2)} - 1 \right] \right\} , \]

(5)

where

\[K = \frac{\sqrt{3w}}{a} , \quad V = -\frac{\sqrt{3w^2}}{a^2} \]

(6)

and \(g = \beta G \) is a dimensionless coupling constant.
Friedmann equations

\[\frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3} \rho, \]
(7)

\[\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (\rho + 3p), \]
(8)

with

\[p = \frac{1}{3} \rho_c (3 - \mathcal{P} - 2\mathcal{P}^{-1}) \quad \text{and} \quad \rho = \rho_c (\mathcal{P} - 1), \]
(9)

\[p = \frac{\rho (\rho_c - \rho)}{3 (\rho_c + \rho)} \]
(10)

where \(\rho_c = \beta/4\pi \) plays a role of the BI critical energy density and \(\mathcal{P} \) is given by

\[\mathcal{P} = \sqrt{\frac{1 + V^2}{1 - K^2}}. \]
(11)
On the other hand, the gauge field influences the metric only through the quantity \mathcal{P}, related to the energy density. This quantity obeys the differential equation:

\[
\dot{\mathcal{P}} = 2\frac{\dot{a}}{a} \left(\frac{1}{\mathcal{P}} - \mathcal{P} \right),
\] \hspace{1cm} (12)

and this last equation can be integrated once, giving \mathcal{P} as a function of a:

\[
\mathcal{P} = \sqrt{1 - \kappa \left(\frac{a_0}{a} \right)^4},
\] \hspace{1cm} (13)

where κ is an integration constant.

The **Friedmann equation** turns out to be

\[
H^2 = \frac{2g}{3} \left[\sqrt{1 - \kappa(1 + z)^4} - 1 \right]
\] \hspace{1cm} (14)
Since the earliest evidence of tight correlations in gamma-ray bursts spectral properties, the possibility arose of using GRBs as standard candles. Being so GRBs may open a window in redshift as far as $z \sim 8$, extending then the attainable range provided by SNe Ia observations.

Amati relation

We shall apply the empirical relation $E_p - E_{iso}$ derived by Amati (2008), that connects

$$E_p = E_{p,obs} (1 + z).$$
Since the earliest evidence of tight correlations in gamma-ray bursts spectral properties, the possibility arose of using GRBs as standard candles. Being so GRBs may open a window in redshift as far as $z \sim 8$, extending then the attainable range provided by SNe Ia observations.

Amati relation

We shall apply the empirical relation $E_p - E_{iso}$ derived by Amati (2008), that connects

- $E_p = E_{p,obs}(1 + z),$
- $E_{iso} = 4\pi d_L^2 S_{bolo}(1 + z)^{-1}.$
Since the earliest evidence of tight correlations in gamma-ray bursts spectral properties, the possibility arose of using GRBs as standard candles. Being so GRBs may open a window in redshift as far as $z \sim 8$, extending then the attainable range provided by SNe Ia observations.

Amati relation

We shall apply the empirical relation $E_p - E_{iso}$ derived by Amati (2008), that connects

- $E_p = E_{p,obs}(1 + z)$,
- $E_{iso} = 4\pi d_L^2 S_{bolo}(1 + z)^{-1}$.
We calibrated the Amati relation for 50 GRBs low-redshift \((z < 1.4)\) using the 557 Union2 SNe Ia data following the cosmology-independent calibration method proposed by Liang (2008):

\[
\log \frac{E_{iso}}{\text{erg}} = \lambda + b \log \frac{E_p}{300\text{keV}}. \tag{15}
\]

With

\[
\lambda = 52,7636 \pm 0,0626, \quad b = 1,6283 \pm 0,1059. \tag{16}
\]

Extrapolating the calibrated Amati relation to 59 high-redshift GRBs, we obtained the distance moduli \(\mu\) for the extended sample of 59 GRBs at \(z > 1.4\) using

\[
E_{iso} = 4\pi d_L^2 S_{bol}(1 + z)^{-1} \quad \text{and} \quad \mu = 5 \log \frac{d_L}{\text{Mpc}} + 25. \tag{17}
\]

For details of the calibration, see A. Montiel and N. Bretón, JCAP 08 (2011) 023.
We calibrated the Amati relation for 50 GRBs low-redshift \((z < 1.4)\) using the 557 Union2 SNe Ia data following the cosmology-independent calibration method proposed by Liang (2008):

\[
\log \frac{E_{iso}}{\text{erg}} = \lambda + b \log \frac{E_p}{300\text{keV}}. \tag{15}
\]

With

\[
\lambda = 52.7636 \pm 0.0626, \quad b = 1.6283 \pm 0.1059. \tag{16}
\]

Extrapolating the calibrated Amati relation to 59 high-redshift GRBs, we obtained the distance moduli \(\mu\) for the extended sample of 59 GRBs at \(z > 1.4\) using

\[
E_{iso} = 4\pi d_L^2 S_{bolo} (1 + z)^{-1} \quad \text{and} \quad \mu = 5 \log \frac{d_L}{\text{Mpc}} + 25. \tag{17}
\]

For details of the calibration, see A. Montiel and N. Bretón, JCAP 08 (2011) 023.
The theoretical distance modulus is defined by

\[\mu_{th}(z; a_1, \ldots, a_n) = 5 \log \frac{d_{L}^{th}(z; a_1, \ldots, a_n)}{\text{Mpc}} + 25. \]

On the other hand, given a parametrization \(H(z; a_1, \ldots, a_n) \) depending on \(n \) parameters \(a_i \), the corresponding Hubble free luminosity distance in a flat cosmology is

\[d_{L}^{th}(z; a_1, \ldots, a_n) = c(1 + z) \int_{0}^{z} \frac{1}{H(z'; a_1, \ldots, a_n)} dz'. \]

Using the maximum likelihood technique we can find the goodness of fit for the corresponding observed \(d_{L}^{obs}(z_i) \).
The best-fit model parameters are determined by minimizing $\chi^2_{\mu}(g, \kappa)$:

$$\chi^2_{\mu}(g, \kappa) = \sum_i \frac{[\mu_{obs}(z_i) - \mu_{th}(z_i, g, \kappa)]^2}{\sigma^2_{\mu_{obs}}(z_i)}.$$ (18)
Results

The best-fit value for the nonlinear electromagnetic cosmological model parameters \((g, \kappa)\) and the \(\chi^2_{d.o.f.}\) using SNe Ia and SNe Ia + GRBs are summarized in the following table:

<table>
<thead>
<tr>
<th></th>
<th>SNe Ia</th>
<th>SNe Ia + GRBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g)</td>
<td>5999.9993 +59,9983</td>
<td>5999.9994 +59,5110</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>-3.0742 +0,0535</td>
<td>-3.0732 +0,0535</td>
</tr>
<tr>
<td>(\chi^2_{d.o.f.})</td>
<td>1.5647</td>
<td>1.6242</td>
</tr>
</tbody>
</table>

\[H_0 = 63.83 \text{ km s}^{-1} \text{ Mpc}^{-1} \]
We show the joint confidence regions in the \((g, \kappa)\) plane for the nonlinear electromagnetic cosmological model. The contours correspond to \(1\sigma-4\sigma\) confidence regions using SNe Ia (left panel) and SNe Ia + GRBs (right panel).
We show the joint confidence regions in the \((g, \kappa)\) plane for the nonlinear electromagnetic cosmological model. The contours correspond to \(1\sigma-4\sigma\) confidence regions using SNe Ia (left panel) and SNe Ia + GRBs (right panel).

\[
\begin{align*}
 g &= 5999.9993^{+59,9983}_{-49,9993} \\
 \kappa &= -3,0742^{+0,0535}_{-0,0981}
\end{align*}
\]
We show the joint confidence regions in the \((g, \kappa)\) plane for the nonlinear electromagnetic cosmological model. The contours correspond to 1\(\sigma\)-4\(\sigma\) confidence regions using SNe Ia (left panel) and SNe Ia + GRBs (right panel).

\[g = 5999,9993^{+59,9983}_{-49,9993} \]
\[\kappa = -3,0742^{+0,0535}_{-0,0981} \]

\[g = 5999,9994^{+59,5146}_{-49,9999} \]
\[\kappa = -3,0732^{+0,0537}_{-0,0981} \]
We show the joint confidence regions in the \((g, \kappa)\) plane for the nonlinear electromagnetic cosmological model. The contours correspond to \(1\sigma-4\sigma\) confidence regions using SNe Ia (left panel) and SNe Ia + GRBs (right panel).

\[
g = 5999.9993^{+59.9983}_{-49.9993} \\
\kappa = -3.0742^{+0.0535}_{-0.0981}
\]

\[
g = 5999.9994^{+59.5110}_{-49.9994} \\
\kappa = -3.0732^{+0.0535}_{-0.0981}
\]
Conclusions

In this work, we presented how we can use the calibrated sample of 109 GRBs in order to test a cosmological model.
Conclusions

In this work, we presented how we can use the calibrated sample of 109 GRBs in order to test a cosmological model.
Conclusions

In this work, we presented how we can use the calibrated sample of 109 GRBs in order to test a cosmological model.

In particular, we studied a model based on a Born-Infeld Lagrangian proposed by Dyadichev et al. (2002) that considers homogeneous and isotropic configurations of the SU(2) Yang-Mills field as the only matter source.
Conclusions

- In this work, we presented how we can use the calibrated sample of 109 GRBs in order to test a cosmological model.

- In particular, we studied a model based on a Born-Infeld Lagrangian proposed by Dyadichev et al. (2002) that considers homogeneous and isotropic configurations of the SU(2) Yang-Mills field as the only matter source.
Conclusions

In this work, we presented how we can use the calibrated sample of 109 GRBs in order to test a cosmological model.

In particular, we studied a model based on a Born-Infeld Lagrangian proposed by Dyadichev et al. (2002) that considers homogeneous and isotropic configurations of the SU(2) Yang-Mills field as the only matter source.

Probing this model with SNe Ia and SNe Ia + GRBs we obtained as best-fit model parameters ($g = 6000$, $\kappa = -3.1$):
Conclusions

In this work, we presented how we can use the calibrated sample of 109 GRBs in order to test a cosmological model.

In particular, we studied a model based on a Born-Infeld Lagrangian proposed by Dyadichev et al. (2002) that considers homogeneous and isotropic configurations of the SU(2) Yang-Mills field as the only matter source.

Probing this model with SNe Ia and SNe Ia + GRBs we obtained as best-fit model parameters ($g = 6000$, $\kappa = -3.1$):

- $H_0 = 63.83$ km s$^{-1}$ Mpc$^{-1}$
Conclusions

In this work, we presented how we can use the calibrated sample of 109 GRBs in order to test a cosmological model.

In particular, we studied a model based on a Born-Infeld Lagrangian proposed by Dyadichev et al. (2002) that considers homogeneous and isotropic configurations of the SU(2) Yang-Mills field as the only matter source.

Probing this model with SNe Ia and SNe Ia + GRBs we obtained as best-fit model parameters ($g = 6000$, $\kappa = -3,1$):

- $H_0 = 63.83 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- The BI critical field β turns out to be $9 \times 10^{13} \text{ N}^{-1} \text{ m}^{-2} \text{ kg}$.

Probing nonlinear electromagnetic cosmological models with GRBs. January 2012
In this work, we presented how we can use the calibrated sample of 109 GRBs in order to test a cosmological model.

In particular, we studied a model based on a Born-Infeld Lagrangian proposed by Dyadichev et al. (2002) that considers homogeneous and isotropic configurations of the SU(2) Yang-Mills field as the only matter source.

Probing this model with SNe Ia and SNe Ia + GRBs we obtained as best-fit model parameters ($g = 6000$, $\kappa = -3.1$):

- $H_0 = 63.83$ km s$^{-1}$ Mpc$^{-1}$
- The BI critical field β turns out to be 9×10^{13} N$^{-1}$ m$^{-2}$ kg2.

References

References

References

