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A Simple SAM
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■ Create a simple SAM that encompasses most published SAMs.

■ Assume a cosmology and dark matter type.
◆ Six hidden parameters: Ωm, Λ,H0,σ8,n, & Ωb.

◆ Determines power spectrum.

■ Begin with dark matter merger trees.
◆ Can be extracted from N-body simulations.

◆ Can be generated by a Monte-Carlo method using extended
Press-Schechter.

■ Next model the radiative cooling of the gas.
◆ Stop radiative cooling above a halo mass ofMcc to mock up

“Velvet Rope” feedback, e.g. AGN



There are Many Ways to Be Cool
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■ Different methods give quite different results.

■ Accretion is either hot or cold; no mixed accretion.

■ Developed new model that has mixed accretion.



There are Many Ways to Be Cool
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■ Compared to simulations:
◆ Total cooling rates too small in low mass, cold mode halos.

◆ Total cooling rates are too high in higher mass, hot mode halos.

■ In the work presented here assume Croton cooling law.



SAM Star Formation
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■ Assume the cold gas forms an exponential disk with scalelength
rdisk = 0.035rvir.

■ Stars only form in gas, mSF, above density threshold of fSF M! pc−2.

■ SFR inversely proportional to disk dynamical time:

τdisk =
rdisk
vvir

,

ṁ∗ = ε∗
mSF
τdisk

,

ε∗ =

{

αSF vvir ≥VSF
αSF

(

vvir
VSF

)βSF
vvir <VSF

.



SAM Star Formation Feedback
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■ We assume that a fraction αSN of the supernova energy can either
reheat the gas or make a wind.

■ The mass of reheated gas is frhΔtṁ∗.

frh = αRH

(

220km/s
vvir

)βRH
,

frh,max = αSN

(

VSN
vvir

)2
,

■ The mass of gas in the wind is

mwind = εWΔtṁ∗

{

αSN

(

VSN
vesc

)2
− frh

[

(

vvir
vesc

)2
]}

.

■ A wind fraction of fRI returns as hot gas on a dynamical time.



SAMMergers

Cancun 7 / 36

■ When dark halos merge the smaller central galaxy becomes a satellite
of the larger central along with all previous satellites of both galaxies.

■ The satellites start at rvir and sink by dynamical friction with a time
scale

tfric = fDF
1.17r2virvvir

ln(1+Mvir/Msat)GMsat
.

■ When galaxies merge a starburst occurs consuming a fraction eburst of
the combined cold gas,

eburst = αburst

(

Msat
Mcentral

)βburst
.



SAM Flowchart
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Play it SAM: the Old Song
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■ Usually the SAM is adjusted “to match” a fundamental data set by
adjusting the parameters “by hand’ and the fit is judged “by eye.”

■ This is not probabilistically rigorous; there are no confidence intervals
for the parameters given the data.

■ Predictions for other observables are made using the “fit” parameters
instead of the full range of allowed values and again the “fits” are
assessed “by eye.”

■ Some parameter values are fixed arbitrarily.

■ To assess the effect of some physical parameter one holds the others
fixed and varies the one parameter.

■ When adding new physical effects, i.e. new parameters, the values of
the old parameters are held at their old values.

■ Use a Bayesian Inference approach to get around these problems.



Bayes Theorem
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■ Bayes theorem states the probability of a model characterized by its
parameter vector θ, given some data set D.

P(θ|D) =
L(D|θ)π(θ)

R

L(D|θ)π(θ)dθ

■ P(θ|D): posterior distribution.

■ L(D|θ): likelihood function; probability of the data given θ

■ π(θ): prior distribution of the parameter vector θ, our prior knowledge
about the parameter.



Advantages of Bayesian Approach
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■ Maximum Likelihood (ML) assigns the best-fit parameter value to the
model that has the highest probability of generating the observed data.

■ Really want to know: what is the probability of the model for the
observed data?

■ The best fit model suffers from intrinsic covariance and the possibility
of complex topologies leading to multiple, non-Gaussian modes.

■ Need the full posterior as provided by Bayesian MCMC.

■ Can use statistics like Bayesian Evidence to discriminate between
models. e.g. Does one need AGN feedback?



Bayesian Evidence
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■ Apply Bayes theorem to give the probability of the theory M based on
the data D given a prior probability of the theory.

P(M|D) =
P(D|M)P(M)

R

P(D|M)P(M)dM

where
P(D|M) =

Z

L(D|M,θ)π(θ|M)dθ

■ P(M|D) is the Bayesian Evidence.



Bayes Factor
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■ Can estimate the posterior odds of two different theories M1 andM2
parametrized by different parameter vectors θ1 and θ2:

P(M1|D)

P(M2|D)
=
P(M1)

P(M2)
K12 where K12 ≡

P(D|M1)

P(D|M2)
. (1)

■ P(D|Mi): the marginal likelihood for model i.

■ If one does not favor either theory a priori, P(M1)
P(M2) = 1 since

P(M1) = P(M2).

■ K12: Bayes factor–odds in favor of one theory over another for the
data.

■ Example: Is data better fit with a model that adds AGN feedback?



The Bayesian Approach in Practice
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■ Goal is to characterize the posterior distribution by sampling P(θ|D).

■ Not practical to solve analytically or by evaluating the posterior
probability over a grid in parameter space for complex problems.

■ Sample the posterior using Markov chain Monte Carlo (MCMC).

■ MCMC algorithms sample from probability distributions using a
Markov chain that has the desired distribution as its equilibrium
distribution.

■ A Markov chain is a random process where the next state θi+1
depends only on the current state θi and not on the past.

■ Metropolis–Hastings is a common MCMC algorithm.



Metropolis–Hastings Algorithm
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■ Use proposal function Q(θp;θi) to generate proposed sample θp.

■ Q(θp;θi) must be symmetric, Q(θp;θi) = Q(θi;θp), e.g.
θp =N (θi,σ2).

■ Proposal is accepted, i,e, θi+1 = θp if

α<min
(

P(θp)Q(θi;θp)
P(θi)Q(θp;θi)

,1
)

=min
(

L(D|θp)π(θp)Q(θi;θp)
L(D|θi)π(θi)Q(θp;θi)

,1
)

where α is a random number α∼U(0,1).

■ If the proposal is rejected then θi+1 = θi.

■ Start from a random initial value θ0; run for many iterations until
initial state forgotten, called burn-in.

■ Adjust σ to get good acceptance rate, ∼ 25% to get good mixing.



Bayesian Inference Engine (BIE)
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■ An MCMC parallel software platform for performing Bayesian
inference over very large data sets.

■ Developed by multi-disciplinary team from Astro and Comp Sci at
UMass led by Martin Weinberg.

■ Uses scalable multiprocessor software architecture and operates on
modest cost hardware.

■ Uses standard MPI and POSIX threads so runs on a broad spectrum of
parallel or scalar machines.

■ Includes: standard Metropolis-Hastings, simulated tempering, parallel
tempering, parallel hierarchical sampling, differential evolution, and
independent multiple chains.

■ Saves checkpoint images so can restart from last MCMC step.

■ Available at: www.astro.umass.edu/∼weinberg/bie



Bayesian SAM Flowchart
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Posterior Madness: Why we need Fancy MCMC
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■ Marginalized over 10 of 13 parameters with slices in log fSF.

■ Posterior is very thin and twisted.

■ Impossible to find global maximum by hand.
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Play it SAM: The New Song
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■ Use galaxy stellar mass function as data constraint.

■ Can fit the data well.

■ Posterior is complex and multi-modal.
◆ Some modes are equivalent to previously published SAMs.

■ Some parameters are covariant, e.g. fSF–αSF; αRH–βRH; and
MCC– fDF.
◆ EitherMCC is about 1012 and fDF is about one orMCC is large and

fDF is very small.



SAM marginalized Posterior
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Play it SAM: The New Song (With Restrictions)
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■ Restrict the prior to make our SAM more like the Croton SAM.
◆ βSF = 0.

◆ VSF = 160kms−1.

◆ fSF = 100, equivalent to Σsf ≈ 10M!/pc2.

■ Still fits the data well.

■ Greatly reduces covariances and the allowed parameter range.

■ The main mode in the posterior barely overlaps the main mode for the
unrestricted prior.

■ Now requires βRH to be large.

■ Previous published work claimed that βRH must be large to match low
mass end.



SAM marginalized Posterior: Restricted Prior
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Play it SAM: The New Song (With Even More
Restrictions)
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■ Set βRH = 2.

■ Still able to match the data even though βRH is not large.
◆ Moral: Cannot hold one parameter fixed to see the allowed range

of another parameter.

■ Again the main mode has moved.

■ Further reduces covariances and the allowed parameter range.



SAM: Further Restricted Prior
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Covariant Errors in the Data
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■ The error covariance matrix of the stellar mass function is not really
diagonal, i.e. the errors in each bin are not independent.

■ Including the full error covariance matrix reduces the allowed region.

■ Using the full covariance matrix has also allowed a new mode.



Play it SAM: K-band Constrained)
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■ K-band errors should be diagonal.

■ The faint end completeness is not well understood so we parametrize
it with an additional parameter and then marginalize over it.

■ Again we can fit the data and find other SAMs in some of the
posterior modes.

■ Some differences with the stellar mass function constrained inference.
◆ Now only the mode with MCC about 1012 and fDF about one is

allowed.

◆ Allowed ranges of βSF and βRH have also changed.



SAM: K-band Constrained
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Making predictions

Cancun 28 / 36

■ Use the whole posterior to make predictions of other observables.

■ Can use Posterior Predictive Check (PPC) using Principle Component
Analysis (PCA) to statistically look for consistency with the data and
the predictions.

■ A lack of fit does not necessarily mean the model cannot fit both data
sets.
◆ Need to do an inference using both data sets as constraints.

◆ Then use PPC to check for the goodness of fit to both data sets.



Predicted HI Mass Function
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■ Too high everywhere,
◆ Turn down at small masses owes to mass resolution effects.

■ Perhaps need to include preheating.



Predicted Tully-Fisher Relation
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■ Amplitude and shape are both wrong.

■ Predictions can vary in the allowed parameter range.



Predicted Color-Magnitude Diagram
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■ Sometimes it is bimodal, often it is not.

■ Predictions can vary in the allowed parameter range.



Predicted Stellar Mass Functions at High
Redshift
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■ Shape is wrong.

■ Does better if one uses a cooling model that explicitly includes cold
mode accretion.



Predicted Stellar Mass Density Evolution
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Predicted Global Star Formation History
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Predicted Cold Gas Mass Density Evolution
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Conclusions
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■ It is possible and highly desirable to use Bayesian Inference with
MCMC when using SAMs.

■ The solutions to SAMS are multi-modal.

■ Many parameters are highly covariant.

■ One should use the entire posterior when making predictions.

■ Observers should always publish the full error covariance matrix of
their data to make it useful for Bayesian Inference.

■ Need to use multiple data constraints simultaneously in the future.

■ May need to add more physical processes.

■ “Full” SAMs will have over 50 parameters!

■ Much work remains to be done.
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