
Lecture Three: Statistics and Cosmology 

“In ancient times they had no statistics so they 
had to fall back on lies.”       Stephen Leacock  



Recommended books 

“The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction”, Hastie 
et al 

“Pattern Recognition and Machine 
Learning”, Bishop 

“Data Analysis: A Bayesian Tutorial”, Sivia Python based machine learning 
tool kit.  



Exposure 1 

Exposure 2 

Exposure 1 
- 

Exposure 2 

What is the science we want to do? 
•  Finding the unusual  

–  Nova, supernova, GRBs  
–  Source characterization  
–  Instantaneous discovery  

•  Finding moving sources 
–  Asteroids and comets 
–  Proper motions of stars 

•  Mapping the Milky Way 
–  Tidal streams 
–  Galactic structure 

•  Dark energy and dark matter 
–  Gravitational lensing 
–  Slight distortion in shape 
–  Trace the nature of dark energy 



Exposure 1 

Exposure 2 

Exposure 1 
- 

Exposure 2 

What are the operations we want to do? 
•  Finding the unusual  

–  Anomaly detection 
–  Dimensionality reduction 
–  Cross-matching data 

•  Finding moving sources 
–  Tracking algorithms 
–  Kalman filters 

•  Mapping the Milky Way 
–  Density estimation 
–  Clustering (n-tuples) 

•  Dark energy and dark matter 
–  Computer vision 
–  Weak Classifiers 
–  High-D Model fitting 



1.  Complex models of the universe 
     What is the density distribution and how does it evolve 

 What processes describe star formation and evolution 

2.  Complex data streams 
 Observations provide a noisy representation of the sky 

3.  Complex scaling of the science 
     Scaling science to the petabyte era 

Science is driven by precision we need to tackle 
issues of complexity: 



There are no black boxes 



Complexity and simplifying data 

We can measure many 
attributes about sources 
we detect… 

… which ones are 
important and why (what is 
the dimensionality of the 
data and the physics) 

Connolly et al 1995 



What the Hell do you do with all of that Data? Low dimensionality even with complex data 
O

ld
 

Yo
un

g 

4000-dimensional (λ’s) 

10 components Ξ >99% of variance 
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Karhunen-Loeve definition 

Given a covariance/correlation matrix we can define an eigenbasis 
such that the eigenvectors are an orthogonal basis on which to project  
the data (providing an optimal subspace filtering if we truncate the expansion) 



What the Hell do you do with all of that Data? Low dimensionality even with complex data 
O

ld
 

Yo
un

g 

4000-dimensional (λ’s) 

10 components Ξ >99% of variance 

€ 

f λ( ) = aieii<N
∑ λ( )



Dimensionality relates to physics 

Yip  et al 2004 

400-fold compression 
Signal-to-noise weighted 
Accounts for gaps and noise 
Compression contains physics 

Elliptical 

Spiral 



Learning structure to find the unusual 

Type Ia supernovae 
0.01% contamination 
to SDSS spectra 

Type Ia supernovae 
Visible for long 
(-15 to 40 days) 

€ 

SN λ( ) = f (λ) − aiegii<N
∑ λ( ) − qieq ii<N

∑ λ( )

Well defined spectral 
signatures 
Magwick et al 2003 
Krughoff et al 2010 



Bayesian classification of outliers 

Density estimation using a mixture of Gaussians  
gives P(x|C): likelihood vs signal-to-noise of anomaly 



Quantifying the outliers and subspaces 
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Decompose into principal subspace and  
noise subspace (SVD) 
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Accumulate the errors given a truncation  
(or over all truncations) 

Extend to non negative matrix factorization  
(a more physical basis) 

€ 

U,V = argmin
U ,V

|| X −UTV ||2,U ≥ 0,V ≥ 0



Robust low rank detectors 

Decompose into Gaussian noise and outliers 

€ 

X =UTV + E +O
Mixed matrix factorization (iteratively decompose  
matrix then solve for outliers). Using the L1 norm  
as the error measure 

€ 

min
U ,V ,O

1
2
|| X −UTV −O ||2 +λ ||O ||r

How to choose λ is an open question (set to  
produce % of outliers) 



Active learning (http://autonlab.org/sdss) 

Xiong et al 2012 



From a more cosmological perspective 

•  KL-based compression 
–  Karhunen-Loeve (Vogeley and Szalay 1996, Tegmark et al 1998) 
–  Optimal subspace filtering 

•  Signal from gravitational clustering 
•  Background from noise, photometric errors, selection functions, 

gaps within the data 
•  Covariance matrix derived from the clustering models.  

Diagonalization of this covariance model tries to separate these 
components into their appropriate subspaces 



KL-modes 

KL modes are also dense-packed in Fourier-space, thus 
optimally represent the information given by survey geometry. 

Szalay et al 2002 



Band power spectra from KL modes 

Pope et al 2004  



KL applied to lensing and missing data 

Pixelize shear maps (ala density maps) and calculate the  
correlation matrix 

vanderPlas et al 2012 



Noise Free 

KL Bases (lensing) 

Noise added 

KL bases 

Reconstruction 

Gappy  
reconstruction 

VanderPlas et al 2012 

Noise Free 



Reconstructing the convergence 

Reproduce the shear peak statistics for a gappy data set with  
a 20% mask fraction 

VanderPlas et al 2012 



More than PCA: Manifold learning 

Local Linear Embedding (Roweis and Saul, 2000) 

Preserves local structure 
Slow and not always robust to outliers 

PCA LLE 



A compact representation accounting for 
broad lines  

VanderPlas and Connolly 2009 

Elliptical 

Spiral 

Seyfert 1.9 

Broad line QSO 

No preprocessing  

Continuous 
Classification 

Maps to a physical 
space 



Other ways to search parameter space 

•  Monte Carlo  Markov Chains (MCMC) 
–  Christiensen et al 2001 
–  37 papers prior to 2001, 568 since 2001 

“But with this miraculous development of the ENIAC—along with 
the applications Stan must have been pondering—it occurred to 
him that statistical techniques should be resuscitated, and he 
discussed this idea with von Neumann. Thus was triggered the 
spark that led to the Monte Carlo method.” 

Metropolis 1987 describing Stan Ulam 



Characterizing the posterior  

CosmoMC: Lewis and Bridle (2002 PRD 66 103511) 

€ 

θ = {Ωbh
2,ΩCDM h

2,ΩΛ,h,τ,ns,A}

Data from the angular power spectrum (1200 Cl’s) 

What parameters are allowed by the data? 

€ 

χ2 =
(xi − µi)

2

σ 2
d
∑ = (xi − µi)

i, j
∑ Cij
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If points are independent (or diagonalizable) and  
normally distributed 
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PDF :   N(χ2)∝ χ2(ν −2)/ 2e−χ
2 / 2 ν # dof  



Frequentist and Bayesian approaches 

•  Frequentist 
–  Define confidence interval and its associated chi-sq 
–  Any point that satisfies this criteria is acceptable 
–  Find all curves for which data is (100-α)% likely 

•  Bayesian 
–  Treat θ as random variables 
–  Integrate the PDF on θ to encapsulate (100-α)% 

•  Pragmatist 
–  As long as the number of data points is large (what does 

that mean) the results should be equivalent 



Searching parameter space 

To encapsulate the ellipse we can search over parameter space (grid search) which  
is expensive (Nd: 1006 which is expensive if your model evaluation is expensive) 

Or we can sample parameter space with the same frequency distribution as the PDF 



Bayes Theorem 

€ 

P(θ |D) =
P(θ)P(D |θ)
P(θ ')P(D |θ ')dθ '∫

Prior  Our Χ2 distribution Posterior 

If we can walk randomly through parameter space such that  
the list of points we touch (and how long we lingered)   
reflects the posterior  we can use these lists (chains) to  
construct histograms mimicking the posterior 



Monte Carlo Markov Chains 

•  Algorithm 
1.  Pick a point at random in the θ space and calculate χ2 
2.  Pick a new point according to some distribution q(θ1,θ2) 

and evaluate χ2 
3.  If χ2

2<χ2
1  

•  θ2 becomes the new point (on the chain) 
4.  else 

•  pick a random number (0:1) and if this number is less than 
 P(χ2

2)/P(χ2
1) make the step  

5.  If step is rejected note you lingered at this point 
6.  Repeat 2-5 

Overtime, if the chain is long enough, the histogram of how long you  
stayed at each point will reflect P(θ|D) 



What should you think about 

•  How to pick the next step? 
–  Markov process means you don’t want the history of the 

chain to determine where next (q(θ1,θ2) is dependent on the 
current state only) 

–  Big steps give slow convergence but sample a lot of 
parameter space 

–  Small steps converge quickly but may miss things 
•  How do we define convergence? 

–  Brooks and Gelman (1998) say 
•  Run multiple chains until variance of the means ~ means of 

the variances 

€ 
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Kriging: A frequentist approach 

•  Algorithm 
1.  Generate an even sampling of parameter space and store 

the likelihoods 
2.  Generate a large number of candidate points distributed 

evenly in parameter space 
3.  Use the evaluated points (stored previously) to predict the 

likelihood of the candidate points (and uncertainty) 
4.  Select a point with the maximum parameter, 

evaluate the likelihood and store this with the enumerated 
points 

–  Repeat (2) and (3) until you have defined the boundary of 
the (100-alpha)% confidence interval 

–  Technique seeks the boundary (and not the interior of the 
boundary) 



Kriging has similar bounds with fewer calls. It is better at  
finding regions of parameter space therefore we can say  
things about low and high likelihood space. It lacks a  
convergence criteria  

MCMC vs Kriging 

Daniel et al 2012 



Defining your initial set of points 
•  Kriging: Gaussian processes 

–  To define the evaluation points we wish to estimate the 
mean and variance of points in parameter space  

–  C(θi,θj) describes how variations at one point are coupled to 
another  

–  More distant points are less correlated (σ increases with 
separation) 

–  Number of starting points, number of candidate points, 
magnitude of decorrelation and tunable parameters 



Networks as a model for 
interdependencies 

A friendship network for children in a US school (M.E. 
Newman 2003, figure courtesy James Moody) 



Bayesian and Belief Networks   

•  Probabilistic Models 
–  Explain conditional 

interdependencies between 
parameters 

–  Directed Acyclic graphs 
–  Learning the network is expensive 
–  Applying a network is quick 

•  Challenge of Astronomical data 
–  What are the conditional 

dependencies 
–  Real valued, noisy with missing 

data 
•  Solution in dependency trees 

–  Each node has only one parent 
–  Reduces the number of edges 

Sun/Rain 
Who 

Ends late 

Starts late 

Subject 

P(Subject|Who) 

P(L⏐W,L) = P(L⏐W)  



The full SDSS tree (220 attributes, 
106 sources) 

Pelleg 2005 



Anomalies from a tree 

•  Applying the tree 
–  Test each point against the tree 
–  Determine how well a source is 

drawn from the graph 
–  Rank order sources in the SDSS 
–  Say why it is anomalous 

•  What is a one in a million source? 
–  Anomalies are also artefacts 
–  Diffraction spikes 
–  Cosmic Rays 
–  Bad deblends 
–  Real sources 



Where next? Ensemble learning 

Bagging, boosting, and random forests 

Random forest (or random forests) is an ensemble 
classifier that consists of many decision trees and 
outputs the class that is the mode of the class's output 
by individual trees. The method combines “bagging” and 
the random selection of features in order to construct a 
collection of decision trees with controlled variation. In 
“bagging” each ensemble learnt model has a vote on 
the final classification. “Boosting” learns a model by up 
weighting the poorly fit data of a previous iteration. 

Leo Breiman and Adele Cutler 

Approach won the “Netflix Challenge” 



Decision trees 

Recursively build a 
decision tree using 
information gain 
to define the splits 

We worry about over fitting 
so we prune the tree after 
its construction 

Larger the tree – more  
concerns about overfitting 
(trade complexity for 
stability) 

Vasconcellos et al 2011 



Bagging 

Montillo 

One decision tree  Average 100 decision tree  

Reduces the variance of the boundary by averaging 



Random Forest 

•  Randomly select the attributes you will split on 
–  Randomly choosing m attributes to split on at each level 

•  Makes the tree faster (fewer attributes to learn over)  
•  More stable (less complex) tree 

–  Choose number of trees (N) 
•  Loop over the number of trees 

–  Bootstrap a sample from the training set 
–  Build a decision tree on the bootstrap sample 

»  For each level of  the tree choose m attributes and use these 
attributes to define the next split 

•  Take the mean of the outputs 



Random forests and redshift estimation 

Fast and easy to interpret 
Error on classifications are often Gaussian 
Doesn’t over fit the data (probably) 
Easy to parallelize 
Very simple 

(zphot-zspec)/σE 

Carliles et al 2009 



Statistics and Cosmology 

•  Machine learning is a very dynamic field with many 
techniques that are directly applicable to cosmology 

•  They are not black box implementations 
•   

Scalability remains a concern for the analysis of the 
next generation of surveys 



Thanks 

•  Bhuv Jain 
•  Scott Daniel 
•  Tony Tyson 
•  Chris Stubbs 
•  Alex Szalay 
•  Jake vanderPlas 
•  LSST 
•  DES 
•  EUCLID 

•  Organizers of Cosmology on the Beach 



“If your experiment needs statistics, you ought to have 
done a better experiment.” 

Ernest Rutherford 

One Final Thought….. 


