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Standard Model of Cosmology

Homogeneus and isotropic (and flat) spacetime: ds2 = −dt2 + a2(t)δij dx i dx i .

H2 ≡
(

ȧ
a

)2

=
8πG

3
(ρT )

ä
a

= −
4πG a

3
(ρT + 3PT )

where ρT = ργ + ρν + ρb + ρdm + ρde , which comply with

ρ̇rel + 4Hρrel = 0, ρ̇nonrel + 3Hρnonrel = 0, ρde = const.

· · ·
Two main properties are relevant: clustering dark matter (c2

s = 0) and accelerating dark energy
(PT < −1/3).
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Dark fluids or dark geometry?
Dark Fluid Components

1
8πG

Gµν = T obs
µν + T dark

µν

Any selection of the dark energy-momentum tensor is arbitrary.

Dark Geometry
1

8πG
(Gµν + G dark

µν ) = T obs
µν

Any selection of the dark Einstein tensor is arbitrary.

· · ·

A popular choice (historical reasons!):

T dark
µν = T dm

µν + T de
µν

with:
T dm
µν = ρuµuν a perfect fluid of CDM,

T de
µν = Λ gµν the cosmological constant,

a very successful model , but there are many possibilities.
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Alternative models to ΛCDM
I k-essence
I phantom energy
I strings’s motived models: ghost condensates, UV corrections to curvature,

conformal anomalies.
I Non-minimal couplings f (φ)R
I dm-de interacting models
I Chameleons
I Galileons, etc, etc

...and more
I MOND
I backreaction of perturbations
I Chaplygin gas, p = 1/ρα

I Brane worlds: RS, DPG, Gauss Bonnet
I Loop Quantum Cosmology
I Infrared corrections to curvatures: f(R)
I Cosmic voids, archipelago.

...Let’s look at a possible model.
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Dark matter from scalar field-baryonic couplings

Plethora of couplings: Conformal, trace, non-minimal...

S =

∫
d4x

√
−g
[

R
16πG

−
1
2
φ,αφ,α − V (φ)

]
+ Sint + Sm,

with Lint =
√
−gA(φ)T .

T = −
2
√
−g

δ(Sint + Sm)

δgµν
gµν .

Gµν = 8πG(T (φ)
µν + eα(φ)T (m)

µν )

Tµν = Tφµν +

dm︷︸︸︷
T int
µν︸ ︷︷ ︸

T dark
µν

+T b
µν , T = eα(φ)

ρ

and
�φ− V ′(φ) = α′(φ)eα(φ)ρ,
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Background

I H2 = 8πG
3

(
1
2 φ̇

2 + V (φ)+(eα(φ) − 1)ρ + ρ
)

I φ̈ + 3Hφ̇ + V ′(φ) + α′(φ)eα(φ)ρ0
ba−3 = 0

wdark = − 1

1+ eα(φ)−1
V (φ)

ρ0
ba−3

(in slow roll)

C1 = eα(φ)−1
V (φ)

ρ

∣∣∣∣∣
z=0
≈

Ω
(0)
DM

Ω
(0)
DE

≈ 0.3,

C2 = eα(φ) − 1

∣∣∣∣∣
z=0
≈

Ω
(0)
DM

Ω
(0)
b

≈ 4.7

V (φ) = 1
2 m2
φφ

2, eα = 1 + 1
2 εφ

2
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Linear Perturbations
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(A. Aviles and J.L. Cervantes-Cota, 2011a)



Towards a single fluid description

The elements: locally clustering (perturbations) and globally accelerating (background).

Astrophysics
At very large scales (> 100’s Mpc) the Universe is homogeneous and isotropic: ρ(t,~x) = ρ(t)

Matter perturbations: δ(t,~x) = δρ/ρ

δ
′′ + 2Hδ′ +

(
c2

s k2
phys − 4πGρ

)
δ = 0,

where a prime stands for a cosmic time derivative.

Jeans length lJ = cs

√
π

Gρ

I l > lJ Growth
I l < lJ No growth

and we infer non-baryonic structure growth from dwarf galaxies to cosmological scales.

We define the Dark Fluid (d) as a barotropic fluid with c2
s = 0.

Pd (ρ) = wd (ρ)ρd −→ wd ∝
1
ρd

−→ Pd = const.

Astrophysical observations constrain Pd � ρastro, but no necessarily equal to zero, and this will be
important to interpret the single fluid as dark energy too.
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Background Cosmology

H2 ≡
(

ȧ
a

)2

=
8πGa2

3
(ργ + ρν + ρb + ρd ),

ρ̇rel + 4Hρrel = 0, ρ̇nonrel + 3Hρnonrel = 0, ρ̇d + 3H(1 + wd )ρd = 0.

ρd =
ρd0

1 +K

(
1 +
K
a3

)
, Pd = −

ρd0

1 +K

ρd > 0 −→ Pd < 0.

The single fluid behaves as dark matter and dark energy!
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The Dark Degeneracy

Equation of state parameter of the dark fluid: wd = − 1
1+Ka−3

Equation of state parameter of the dark components in the ΛCDM model:

wdark ≡
∑

i wiρi∑
i ρi

= − 1

1+
Ωdm
ΩΛ

a−3

Under the identifications

Ωd = Ωdm + ΩΛ, K = Ωdm/ΩΛ

the background evolution in both models is exactly the same!

I The Dark Degeneracy (M. Kunz 2009). Any collection of fluids whose total equation of state
parameter is equal to wdark presents the degeneracy. The background evolution is the same
as in the ΛCDM model.

I The fundamental reason is that we define

T dark
µν =

1
8πG

Gµν − T obs
µν .

Any split of the the dark energy momentum tensor is arbitrary, but the particular given
properties of the single fluid are important to exactly emulate the ΛCDM model.
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Beyond the background
Perturbations to the background metric in the Newtonian Conformal gauge

ds2 = a2(τ)
[
− (1 + 2Ψ)dτ2 + (1− 2Φ)δij dx i dx j ]

,

Perturbations to the matter fields.

T 0
0 = −ρ(1 + δ), T i

0 = −(ρ + P)v i
, T i

j = (P + δP)δi
j + PΠi

j .

For the dark fluid, δPd = c2
s δρd = 0, and being a perfect fluid Πi

j = 0, the perturbed eqs. are:

δ̇d = −(1 + wd )(θd − 3Φ̇) + 3Hwdδd ,

θ̇d = −Hθd + k2Ψ.

But these are exactly the same as the usual Cold Dark Matter equations, provided that

I ρdδd = ρdmδdm

I ρd (1 + wd )θd = ρdmθdm

The fluid equations are supplemented with the Einstein’s equations:

k2Φ = −4πGa2
∑

i

ρi ∆i ,

k2(Φ− Ψ) = 12πGa2
∑

i

(ρi + Pi )σi .

the sum runs over all fluid contributions and ∆i = δi + 3H(1 + wi )
θi
k2 the rest fluid energy density.
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k2Φ = −4πGa2
∑

i

ρi ∆i ,

k2(Φ− Ψ) = 12πGa2
∑

i

(ρi + Pi )σi .

the sum runs over all fluid contributions and ∆i = δi + 3H(1 + wi )
θi
k2 the rest fluid energy density.
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The averaging problem

The smoothness of the Universe at large scales allows us to expand the energy-momentum tensor:

T (0)
µν = 〈Tµν〉, Gµν(g(0)) = 〈Tµν〉.

But this is not true in general due to the nonlinear character of gravity, it is well known that
backreaction effects contribute to this last equation. (S.R. Green and R.M. Wald, 2011)

In fact, 〈P〉 = P(〈ρ〉) is not necessarily true and non-linear instabilities occur (P. P. Avelino et al
2004, 2007, 2008).

However, there are two exceptions: the equation of state are P = constant and P = wρ, with w a
constant. Ours is the former model and we are safe from this averaging problem.
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Multiple Interacting Cosmic Components

Gµν = 8πG

(∑
i

Tµνi + TµνSM

)
with ∇µTµνSM = 0.

i labels the different dark components.

∇µTµνi = Qνi −→
∑

i

Qνi = 0, Qν =
1
a

(q + δq)uν + fν

ρ̇i + 3H(1 + wi )ρi = qi

δ̇i + (1 + wi )(θi − 3Φ̇) + 3H
(
δPi
δρi
− wi

)
δi +

qi
ρi

(δi − Ψ) −
δqi
ρi

= 0

θ̇i +H
(

1 − 3wi +
qi wi

H(1+wi )ρi

)
θi +

ẇi
1+wi

θi −
δPi/δρi

1+wi
k2δi − k2Ψ +

k2 fi
ρi (1+wi )

= 0

Defining δT = 1
ρT

∑
i ρiδi , θT = 1

ρT (1+wT )

∑
i ρi (1 + wi )θi .

δ̇T + (1 + wT )(θT − 3Φ̇) + 3H
(
δPT

δρT
− wT

)
δT = 0

and

θ̇T +H(1− 3wT )θT +
ẇT

1 + wT
θT −

δPT/δρT

1 + wT
k2
δT − k2Ψ + k2

σT = 0.

I Taking, wT ≡
∑

i wiρi∑
i ρi

= − 1

1+
Ωdm
ΩΛ

a−3
and imposing c2

sT = 0, we obtain the dark fluid.



Multiple Interacting Cosmic Components

Gµν = 8πG

(∑
i

Tµνi + TµνSM

)
with ∇µTµνSM = 0.

i labels the different dark components.

∇µTµνi = Qνi −→
∑

i

Qνi = 0, Qν =
1
a

(q + δq)uν + fν

ρ̇i + 3H(1 + wi )ρi = qi

δ̇i + (1 + wi )(θi − 3Φ̇) + 3H
(
δPi
δρi
− wi

)
δi +

qi
ρi

(δi − Ψ) −
δqi
ρi

= 0

θ̇i +H
(

1 − 3wi +
qi wi

H(1+wi )ρi

)
θi +

ẇi
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Interactions to the standard model

Couplings between cosmic components: baryons (b), photons (γ), dark fluid (d) ...

I Thomson scattering (up to quadrupole moment):

δQb = δQγ = δQd = 0

k2fγ = −k2fb = −ργ(1 + wγ)axeneσT (θb − θγ), k2fd = 0

Now we look for interactions between the dark sector and the standard model...
...to break the dark degeneracy?

I Electromagnetic inspired (ΣI ):

fd = −fb = ρd (1 + wd )a
ρd0

mpa3
ΣI (θb − θd )/k2

I Chameleon gravity inspired (ΣII ): k2
eff = k2g(ρ) = k2/an

fd = −fb = ρd (1 + wd )ΣII
ρd0

mp
(θb − θd )/k2
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Table: Summary of constraints. The upper panel contains the parameter spaces explored with
MCMC for each one of the three models. The bottom panel contains derived parameters. The data
used are the WMAP seven years data, Union 2 compilation and HST.

Parameter Model ΣI + ΣII
a Model ΣI

a Model ΛCDM a

102Ωbh2 2.420+0.066
−0.064 2.219+0.056

−0.056 2.243+0.053
−0.053

Ωch2 0.1114+0.0061
−0.0060 0.1046+0.0047

−0.0049 0.1089+0.0041
−0.0041

θ 1.039+0.003
−0.003 1.037+0.003

−0.003 1.039+0.003
−0.003

τ 0.08712+0.00565
−0.00721 0.08646+0.0061

−0.0067 0.08797+0.00618
−0.00627

108ΣI
b 2.910+1.169

−1.229 0.4845+0.2980
−0.3824 −−

ΣII
b −7.169+2.218

−1.959 −− −−
ns 0.9869+0.0192

−0.0184 0.9551+0.0135
−0.0137 0.9651+0.0123

−0.0124

log[1010As] 3.118+0.051
−0.051 3.039+0.040

−0.040 3.070+0.031
−0.033

ASZ
c 1.054± 0.578 0.9544± 0.5911 1.040± 0.574

Ωd 0.952+0.033
−0.033 0.956+0.031

−0.030 0.955+0.027
−0.027

K 0.296+0.042
−0.041 0.270+0.034

−0.036 0.291+0.034
−0.032

t0 13.64+0.12
−0.13 Gyr 13.85+0.11

−0.12 Gyr 13.79+1.16
−1.15 Gyr

ΩΛ 0.734+0.024
−0.024 0.754+0.022

−0.021 0.740+0.019
−0.020

H0
d 71.55+1.86

−1.91 71.95+2.09
−1.96 71.14+1.71

−1.85

Notes.
a. The mean values of the posterior distribution for each parameter. The quoted errors show the 68% confidence levels.

b. ΣI and ΣII are given in units of the Thomson scattering cross section times the speed of light, σT = 6.65 × 10−25 cm2 and c = 1.
c. The quoted errors in Asz are the standard deviations of the distributions.

d. H0 is given in Km/s/Mpc.
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breaking degeneracies?

But these interactions do not necessarily break the dark degeneracy. They can be
understood as interactions between dark matter and baryons:

δ̇dm = −θdm + 3Φ̇ +
δqdm

ρdm
,

θ̇dm = −Hθdm + k2Ψ +
k2fdm

ρdm
,

with

δqdm = δqd and fdm = fd .



Summary

I Scalar field couplings to baryons can lead to the Dark Fluid. In this case the dark degeneracy
is not exact, but tuning the parameters can make it as precise as desire.

I What is measured in gravitational experiments is the energy momentum tensor of the total
dark sector. Any split into components (as in dark matter and dark energy) is arbitrary.

I A single fluid, with the simple definition c2
s = 0, leads to the same phenomenology as the

ΛCDM model. Also, this Dark Fluid could be composed by a large zoo of particles with
complicated interactions between them.

I Without non-gravitational interactions it is fundamentally impossible to elucidate the actual
structure of the dark sector. Interactions to baryons could help, but not necessarily, since new
degeneracies can appear.

Thanks!
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