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Outline 

§ Motivation and Overview 
§ Effective field theories throughout physics 

– Decoupling and ‘naturalness’ issues 
§ Quantum effects in gravity: Fighting the ‘split brain’  

– Living with gravity’s non-renormalizability 
– Naturalness issues 

§ Relevance to cosmology 
– A brief cold shower 
– Inflation, Dark matter and Dark energy 
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3.  Quantum Effects in Gravity 

§ Living with gravity’s non-renormalizability 
 
 
 

§ Naturalness and fine-tuning 
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3.1  Living with gravity’s non-renormalizability 

§ What does general relativity not renormalizable mean? 
– compare GR, expanded about a background geometry:                   

        𝑔𝑚𝑛 = 𝑔 𝑚𝑛 + ℎ𝑚𝑛/𝑀𝑝   
     

   
 
 
– with QED 
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3.1  Living with gravity’s non-renormalizability 

§ Why do you care? Imagine calculating photon-photon 
scattering in QED: 
using 
 
to evaluate 
 
 
gives 
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3.1  Living with gravity’s non-renormalizability 

§ Two noteworthy features: 
– The integral converges, and continues to do so once higher orders 

are included (more powers of  e  don’t require a more divergent 
integral) 
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Adds 3 extra internal lines 
plus two vertices and one 
extra loop 



3.1  Living with gravity’s non-renormalizability 

§ Two noteworthy features: 
– Also, if photon energies are small compared with m then this is 

well described to order 𝐸4/𝑚4  by an effective interaction 
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 𝑐 ≅  
𝑒4

4𝜋 2  𝑚𝑖4
𝑖  𝐿 = 𝑐 𝐹𝑚𝑛𝐹

𝑚𝑛 2 

Notice: smallest mass wins 



3.1  Living with gravity’s non-renormalizability 

§ The ‘magic’ of renormalizability in QED: 
– Some amplitudes do diverge in QED, but only the following ones: 

• Those with exactly two external photon lines and no external electron 
lines:  𝐸𝛾 = 2 𝑎𝑛𝑑 𝐸𝑒 = 0. 

• Those with exactly two external electron lines and either zero or one 
external photon line: 𝐸𝛾 = 0 𝑜𝑟 1 𝑎𝑛𝑑 𝐸𝑒 = 2. 
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3.1  Living with gravity’s non-renormalizability 

§ The ‘magic’ of renormalizability in QED: 
– Some amplitudes do diverge in QED, but only the following ones: 

• Those with exactly two external photon lines and no external electron 
lines:  𝐸𝛾 = 2 𝑎𝑛𝑑 𝐸𝑒 = 0. 

• Those with exactly two external electron lines and either zero or one 
external photon line: 𝐸𝛾 = 0 𝑜𝑟 1 𝑎𝑛𝑑 𝐸𝑒 = 2. 
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Precisely the same form as interactions in L, so divergences can be 
absorbed into parameters of L 

𝐿 = 𝛿𝑧1 𝜕𝐴
2 + 𝛿𝑧2𝜓𝜕𝜓+ 𝛿𝑚 𝜓𝜓+ 𝛿𝑒A 𝜓𝜓 



3.1  Living with gravity’s non-renormalizability 

§ The ‘magic’ of renormalizability in QED: 
– Some amplitudes do diverge in QED, but only the following ones: 

• Those with exactly two external photon lines and no external electron 
lines:  𝐸𝛾 = 2 𝑎𝑛𝑑 𝐸𝑒 = 0. 

• Those with exactly two external electron lines and either zero or one 
external photon line: 𝐸𝛾 = 0 𝑜𝑟 1 𝑎𝑛𝑑 𝐸𝑒 = 2. 
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dimensional 
regularization 



3.1  Living with gravity’s non-renormalizability 

§ Repeat for graviton graviton scattering in GR: 
using 
 
to evaluate 

      +     +    
gives       
        
           and 
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3.1  Living with gravity’s non-renormalizability 

§ Two noteworthy features: 
– The no-loop (or ‘tree’) result agrees with classic classical 

calculations of graviton scattering (de Witt)  
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3.1  Living with gravity’s non-renormalizability 

§ Two noteworthy features: 
– The no-loop (or ‘tree’) result agrees with classic classical 

calculations of graviton scattering (de Witt)  
 

– The loop integral diverges, and higher-order loops just diverge 
more and more (as can be seen on dimensional grounds because 
the coupling has dimensions of negative powers of mass) 
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3.1  Living with gravity’s non-renormalizability 

§ Non-renormalizable means all divergences cannot be 
absorbed into the theory’s couplings (ie Newton’s constant) 
– But divergences can be absorbed if GR is regarded as just part of 

a low-energy effective theory, for which we must include all 
possible interactions allowed by symmetries: 
 
 
 

– Additional divergences can be absorbed into the new couplings, 𝑐𝑖 
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Each factor of R carries 
two derivatives of the metric 



§ Can compute size of contributions of each interaction to any 
process.  
– eg L-loop contribution to graviton scattering at energy Q involving E 

external lines (in dimensional regularization) and 𝑉𝑖𝑘  vertices involving 
𝑖 fields and 𝑘 derivatives:  

 
 
 

 

3.1  Living with gravity’s non-renormalizability 
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§ Can compute size of contributions of each interaction to any 
process.  
– eg L-loop contribution to graviton scattering at energy Q involving E 

external lines (in dimensional regularization) and 𝑉𝑖𝑘  vertices involving 
𝑖 fields and 𝑘 derivatives:  

 
 
 

 
– No negative powers of 𝑄, so loops controlled by Q/Mp, and Q/m (with 

the latter only important for higher-curvature terms) 

3.1  Living with gravity’s non-renormalizability 
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§ Power-counting for E-point graviton scattering at energy Q:  
 
 
 

 

– Leading order: 𝑄2/𝑀𝑝
𝐸−2    

 corresponding to L = 0, Vik = 0 unless k = 2  

– These are tree graphs built using only interactions involving 
precisely two derivatives(ie: classical GR ) 
 

3.1  Living with gravity’s non-renormalizability 
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§ Power-counting for E-point graviton scattering at energy Q:  
 
 
 

 

– Next-to-leading order 𝑄4/𝑀𝑝
𝐸  arises in one of two ways  

        L = 1, Vik = 0 unless k = 2; (ie 1 loop in GR )  
 or:  L = 0, Vik = 1 for k = 4, Vik = 0 for k > 4   

            (ie tree graph with R2 term used exactly once).   
 

3.1  Living with gravity’s non-renormalizability 
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Notice: divergences in these        
renormalize coefficients of these 

Notice also: only 4 parameters to 
this accuracy, so still predictive 



§ An example of quantum prediction at low-energy  
– eg: (Bjerrum-Bohr, Donoghue & Holstein) 
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3.1  Living with gravity’s non-renormalizability 
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3.1  Living with gravity’s non-renormalizability 

§ This is the low energy limit of what? 
– Don’t know, but it doesn’t matter. If we know the underlying theory 

(eg string theory), then the constants 𝑐𝑖 can be computed; if we 
don’t know then they are to be obtained from experiments 

 
 
 

– Notice: higher-order terms can be (and usually are) suppressed by 
the lightest mass,  𝑚 ≪ 𝑀𝑝   integrated out (like in QED). 

– Similarly: lowest-order terms (Einstein term and cosmological 
constant) should be enhanced by heaviest scale (𝑀𝑝) 
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3.1  Living with gravity’s non-renormalizability 

§ Useful guideline for model-building  
– Notice: never get anything but a series in curvatures in this way 

 
 
 
 
 
 
 

– For more exotic functions, like 𝑓(𝑅) theories, require a way to 
understand how quantum corrections can be controlled in order not to 
lose the successes of gravity for pulsars and in the solar system.  
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3.1  Local summary 

§ Classical GR is a great success of quantum gravity! 
– Can justify domain of classical approximation. 

– Identifies a hidden approximation: low energies:  𝐸 ≪ 𝑚,𝑀𝑝  

– NO help with strong-field, quickly varying systems (including most 
interesting problems of quantum gravity). 

§ Useful for practical calculations: 
– eg: tracking the v/c expansion for radiation by in-spiralling compact 

sources (Goldberger & Rothstein), etc.. 
– Allows a systematic identification of where quantum effects might be 

small yet significant (eg black holes, inflationary universe,….). 
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3.2  Naturalness and fine-tuning 

§ How does matter change this happy picture? 
– Main change is to allow new kinds of interactions 

 
 
 

§ Low-dimension terms, like mass terms and the cosmological 
constant, are potentially dangerous if m is large 
– When used in loops they introduce powers of 𝑀 in numerators, 

jeopardizing systematic suppression of loops by powers of 𝑄/𝑀  
– Worse: integrating out particle of mass 𝑀 gives contribution with 
m ~ 𝑀 (and the heaviest mass that can contribute is most important). 
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 𝐿 =  𝑉 𝜑 + 𝑔 𝜑  𝜕𝜑 2 +𝑀𝑝
2𝑓 𝜑 𝑅 +. . 

 𝑉 = 𝑚4 +𝑚2𝜑2 +𝑚 𝜑3+. . 



3.2  Naturalness and fine-tuning 

§ These large contributions to masses can sometimes be 
forbidden by symmetries  
– for spin-half and spin-one particles 
– for spin-zero cubic terms 
– supersymmetry 
– for scalar mass terms in specific case where there is a shift 

symmetry: 𝜑 → 𝜑 + 𝑐 (corresponding to a goldstone boson) 
 

§ Otherwise they are dangerous, and reflect a sensitivity to very 
heavy (or very short-wavelength) physics  
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3.2  Naturalness and fine-tuning 

§ Need you really care about these 
large contributions? 
– After all, the couplings have already 

been used to absorb infinite 
contributions from divergences 
 

§ Nobody can force you to care, but 
this is not how things usually work 
 
 

 

M ~ 1011 GeV 

Mw102 GeV 

Mp ~1018 GeV 

HHmLSM

*2

0
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3.2  Naturalness and fine-tuning 

§ Effective theory can be defined at 
any scale 
 
 

 

M ~ 1011 GeV 

Mw102 GeV 

Mp ~1018 GeV 
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 𝐿 = 𝑚0
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Must cancel to 20 decimal 
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3.2  Naturalness and fine-tuning 

§ Not how hierarchies usually work 
– eg why are atoms large compared 

with nuclei? 
 
 

 

Mme 

M ~ QCD 
QCDem 

pe mm 
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3.2  Naturalness and fine-tuning 

§ Not how hierarchies usually work 
– eg why are atoms large compared 

with nuclei? 
 
 QCDem 

pe mm 

 

M ~ m 

Mme 

M ~ QCD 

𝛿𝑚𝑒 =
𝑒4𝑚𝑒
4𝜋 4 
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3.2  Naturalness and fine-tuning 

§ For all known hierarchies of scale, 
our understanding has two parts: 
 
– Why is the hierarchy small in the 

high-energy theory? 
 

– Why does the hierarchy stay small 
as one integrates out successive 
particles to reach the low energies 
where the hierarchy is measured? 

 
 

 

M ~ 1011 GeV 

Mw102 GeV 

Mp ~1018 GeV 

Second part must be solved 
at low energies!! Cosmology on the Beach Jan 2012 



3.2  Naturalness and fine-tuning 

§ For the Higgs mass hierarchy this 
thinking leads to the three main 
categories of proposals for what 
might be seen at the LHC 
 

• Compositeness 
• Supersymmetry 
• Large extra dimensions 

 
 

 

M ~ 1011 GeV 

Mw102 GeV 

Mp ~1018 GeV 
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3.2  Naturalness and fine-tuning 

§ What makes the cosmological 
constant problem hard is that the 
particles involved are very low 
energies, which we think we 
understand well 
 
 

 

me ~ 106 eV 

m10-2 eV 

mw ~1011 eV 

m ~ 108 eV 
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3.2  Naturalness summary 

§ Notice that the entire discussion has been phrased in terms of 
finite, renormalized masses, rather than cutoffs.  
– It is often said that naturalness problems are to do with the presence 

of quadratic or quartic divergences. 
– Cutoffs are used as proxies for the real problems (heavy masses), but 

in general we know that cutoffs do not appear in observables 
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exp 𝑖Γ  =  𝐷𝜑
Λ

 exp 𝑖𝑆Λ 𝜑 +⋯ 

exp 𝑖𝑆Λ 𝜑 =  𝐷𝜑𝐷𝜓
Λ

exp 𝑖𝑆(𝜑, 𝜓)  



3.2  Naturalness summary 

§ Naturalness issues reflect a strong sensitivity of long-distance 
physics to short distance physics 
– It must be fixed my modifying high energy physics, starting at 

relatively low energies (needn’t await a full quantum theory of 
gravity) 

§ Useful for guessing what kinds of new physics might be there 
– All known hierarchies are understood in a natural way: two main 

dangling hierarchies are the electroweak hierarchy (why the Higgs 
mass is small), and the cosmological constant problem (why the 
vacuum energy gravitates so little) 
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