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Motivation

The study of scalar fields are very important for both Cosmology and
Astrophysics, because the scalar fields are candidates to be the dark
matter, which is believed to be responsible for the structure formation
and evolution of galaxies. The dynamical study of a massive scalar field
can yield information about the features of the dark matter. This study
can be done using the Schrödiger-Poisson system (SP). We solve the SP
system in 1D for the equilibrium configuration. We analyze the solutions
in Physical and Fourier spaces.
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SP system in Physical space

The SP system is the weak field version of the Einstein-Klein-Gordon
(EKG) system. SP equations in one dimension are represented by

i~
∂φ

∂t
= − ~

2

2m

∂2φ

∂x2
+mc2Vφ. (1)

d2V

dx2
= 4πG

( m

~c

)2

φ∗φ. (2)

where φ is the scalar field, m the mass of the field and V the
gravitational potential. We will be using units in which ~ = c = 1 and for
numerical purposes we define the variables φ→

√
4πGφ,

∂
∂t → 1

m
∂
∂t ,

∂
∂x → 1

m
∂
∂x , for −L ≤ x ≤ L.
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Numerical Methods

We solve the Poisson equation numerically (2) using Chebyshev
Collocation Spectral Method. We propose

V (xi ) =
M
∑

n=1

anTn(xi ). (3)

where Tn(xi ) = cos(n cos−1(xi )) are the Chebyshev polynomials and
xi = cos(iπ/M) are the set of points that we chose to solve the equation
(3) to find the coefficients an . We substitute (3) into (2) and obtain

M
∑

n=1

an
d2Tn(xi )

dx2
= φ∗(xi )φ(xi ) (4)
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The last equation can be written as a linear matrix for the coefficients an

M~a = ~b, (5)

where the components of the matrix M are T
′′

(xi ) (second order
derivative of the Chebyshev polynomials), the a components are given by
the coefficients an which are unknown and the b components are given by
the right hand side of the equation (4).

To know the coefficients an, we need to solve the system equation (5)
where we only need to invert the matrix M.

The Chebyshev polynomials Tn(x) are only valid in the interval
−1 ≤ x ≤ 1, for this reason we rescale the equations (1) y (2) making
the change x̃ = x

L
.
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To solve the Schrödinger equation we use an ADI method (Alternating
Direction Implicit), which allows us to rewrite the Schrödinger equation
(2) in function of the following system equations

e−
i∆t
4

∂
2

∂x2 S(x) = e
i∆t
4

∂
2

∂x2 φ(t, x)

(6)

e
i∆t
2 Vφ(t +∆t, x) = e−

i∆t
2 VS(x)

We expanded the exponential to the lowest significant order in ∆t, and
discretized the second spatial partial derivative with second order
centered Finite Difference method to obtain

(

1− i∆t

4∆x
δ2i

)

Si =

(

1 +
i∆t

4∆x
δ2i

)

φni (7)

(

1 +
i∆t

2
V

n+ 1
2

i

)

φn+1
i =

(

1− i∆t

2
V

n+ 1
2

i

)

Si (8)

Susana Valdez Alvarado Dr. Luis A. Ureña López Dr. Ricardo Becerril BárcenasStudy of the Schrödinger-Poisson system for applications in Astrophysics



Outline
Schrödinger-Poisson system

Numerical Result
Final Comments

SP system in Physical space
SP system in the Fourier space

with δ2i = δ2xi and δ
2
xi
f (xi ) = f (x − i + h)− 2f (xi ) + f (xi − h). The

subscript i labels the position xi = −1 + i∆x and the superscript n labels

the time step tn = n∆t, with V
n+1/2
i = 3/2V n

i − 1/2V n−1
i . First, we

solve the equation (7)

(

1 +
i∆t

2
H

)

Si =

(

1− i∆t

2
H

)

φni

with H = − ∂2

∂x2 , if we consider Si ∼ φn+1
i we can express it as follow

i φ̇n+1
i = Hφni (9)

we can solve equation (9) by using Method of Lines, and in this way we
obtain the values of Si . Then, from equation (8) we can easily calculate
the values of φn+1

i , because we only need V and S .
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SP system in the Fourier space

The Fourier representations for the potential V (x) and φ(t, x) are

φ(t, x) =
N
∑

k=−N

φk(t)e
ikx , (10)

V (x) =

N
∑

m=−N

Vke
imx , (11)

substituting these expressions in the SP system (1,2)

i

N
∑

k=−N

φ̇ke
ikx =

1

2

N
∑

k=−N

k2φke
ikx +

N
∑

m,k=−N

Vmφke
i(m+k)x ,(12)

−
N
∑

m=−N

m2Vme
imx =

N
∑

k,p=−N

φ∗kφpe
i(p−k)x (13)
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we multiply by e−inx and integrate them onto x , to obtain

i φ̇n =
n2

2
φn +

∑

m+k=n

Vmφk (14)

Vn = − 1

n2

∑

p−k=n

φ∗kφp, (15)

with −N ≤ n ≤ N and n 6= 0. As we can see, equation (14) is a first
order temporal partial derivative for φ which we solve using an integrator
like a Runge-Kutta. The equation (15) is a recurrence expression for the
values of the potential V , because it it enough to know the values of the
function φ.
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Equilibrium Configuration

We can solve the SP system to obtain the nonsingular self-gravitating
configuration the so called equilibrium configurations which has the form

φ(x , t) = ψ(x)e−iωt

(16)

When we substitute the last expression into the SP system (1-2), we
obtain an eigenvalue problem

ψ
′′

= 2ψ(x)U, U
′′

= ψ2(x) (17)

with ψ(0) = 1, ψ
′

(0) = 0, U(0) = U0 y U
′

(0) = 0. To find the proper
value of U0 we use the Shooting Method.
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Final Comments

We constructed the equilibrium configurations of the SP system which
were employed as initial conditions for our time evolution code. We
observed that as these configurations evolve, their mass density is
conserved in both, the physical and Fourier spaces. When an equilibrium
configuration is perturbed, we expect it to eventually migrate to another
equilibrium configuration.
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