Cosmological Simulations on Large, Heterogeneous Supercomputers

Adrian Pope (LANL)

Cosmology on the Beach

January 10, 2011
People

- LANL: Jim Ahrens, Lee Ankeny, Suman Bhattacharya, David Daniel, Pat Fasel, Salman Habib, Katrin Heitmann, Zarija Lukic, Pat McCormick, Jon Woodring

- ORNL: Chung-Hsing Hsu

- Berkeley: Jordan Carlson, Martin White

- Virginia Tech: Paul Sathre

- IBM: Mike Perks

- Aerospace: Nehal Desai
HACC (Hardware Accelerated Cosmology Code)

- **Precise theoretical predictions to match (future) survey observations**
 - Large-scale structure, weak lensing, clusters

- **Throughput**
 - Dynamic range
 - Volume for long wavelength modes
 - Resolution for halos/galaxy locations
 - Repeat runs
 - Vary initial conditions
 - Sample parameter space, emulators for observables (Coyote Universe, Cosmic Calibration)
 - (At least) weak scaling to current and future large supercomputers (many MPI ranks, many cores)

- **On-the-fly analysis, data reduction**
 - Reduce size/number of outputs, ease file system stress

- **Flexibility**
 - Applications often do not choose supercomputer architecture (CPU, Cell, GPGPU, BG)
 - Compute intensive code takes advantage of hardware
 - Bulk of code easily portable (MPI)

- **Development/maintenance**
 - Few developers
 - Simpler code easier to develop, maintain, and port to different architectures
Collisionless Gravity

\[
\frac{\partial f}{\partial t} + \dot{x} \cdot \frac{\partial f}{\partial x} - \nabla \phi \cdot \frac{\partial f}{\partial p} = 0, \quad p = a^2 \dot{x}
\]

\[
\nabla^2 \phi = 4\pi G a^2 (\rho(x, t) - \rho_b(t)), \quad \rho(x, t) = a^{-3} m \int \mathrm{d}^3 p f(x, \dot{x}, t)
\]

- Evolution of over-density perturbations in smooth, expanding background (Vlasov-Poisson)
- Gravity has infinite extent and causes instabilities on all scales
- N-Body
 - Tracer particles for phase-space distribution
 - Self-consistent force
 - Symplectic integrator
Force

- **Long-range (PM = particle-mesh)**
 - Deposit particles on grid (CIC)
 - Distributed memory FFT (Poisson)
 - Pros: fast, good error control
 - Cons: uses memory

- **Short-range**
 - Inter-particle force calculation
 - Several short steps per long step
 - Limited spatial extent
 - Local n^2 comparisons
 - Several choices for implementations
 - Direct particle-particle (P^3M: Cell, OpenCL)
 - Tree solver (TreePM: CPU in development)

- **Spectral smoothing at handover**
 - More flexible than real-space stencils (eg. TSC)
FFT Decomposition

- **Compute:**Communication::Volume:Area
- **Independent of particle decomposition**
 - Buffers to re-arrange
- **Roadrunner 1D tests**
 - (Weak) scaling up to 9000^3, up to 6000 MPI ranks
 - Probably about as far as 1D will go (thin slabs)
- **Analysis: 2D should work for likely exascale systems**
 - 2D FFT is under testing
- **Not as critical to calculate on accelerated hardware**
 - Network bandwidth limited
 - Still relatively fast and accurate force calculation
Particle Overloading

- 3D spatial decomposition (max volume:area)
 - Large-scale homogeneity = load balancing

- Cache nearby particles from neighbors

- Update cached particles like others
 - Move in/out of sub-volumes
 - Skip short-range update at very edge to avoid anisotropy

- Can refresh cache (error diffusion)
 - Not every (long) time step

- Network communication
 - Mostly via FFT
 - Occasional neighbor communication
 - None during short-range force calculation

- Serial code development for short-range force
Architecture

Interconnect (~GB/s)

Node

CPU

Caches

Mem

~Gflops
Architecture

Interconnect (~GB/s)

Node

CPU

Caches

Mem

~Gflops

PCle (~GB/s)

Accelerator

Cores

???

Mem

~Tflops
Modular Code

- Decomposition and communication is independent of hardware (MPI)

- Particles class
 - Particle/grid deposit for long-range force (CIC, CIC\(^{-1}\))
 - Particle position update (easy)
 - Short-range force, velocity update (bottleneck)
 - Use methods/datastructures to suite hardware
 - Fixed set of public methods
Accelerators

- **P³M**
 - Simpler code development
 - Exact calculation can be a reference for approximate methods
 - Chaining mesh: sort particles into buckets, \(\sim \)force-length

- **Organize into independent work units**
 - Cell: concurrent scheduling by hand
 - OpenCL: data-parallel kernel execution

- **Memory hierarchy, coherence**
 - Asynchronous transfers
 - Overlap movement and computation (no “if”s)
 - No competing writes to memory
 - Cell
 - Balanced memory between CPU and Cell
 - Particles in Cell main memory, grid info over PCI
 - OpenCL
 - Possibly (probably?) unbalanced memory
 - Stream slabs through GPU memory
PM Science
First Roadrunner Universe (RRU) Science Runs

- **Roadrunner (LANL)**
 - 3060 nodes
 - 2x dual core Opterons, 10% flops
 - 4x Cell, 90% flops (8 vector processors per Cell)
 - 1 petaflops double precision, 2 petaflops single precision

- **Simulation parameters**
 - 750 Mpc/h side length
 - 64 billion particles (resolve IGM Jeans mass)
 - ~100 kpc/h (resolve IGM Jeans length)
 - 9 realizations (single cosmology)
 - 1000 nodes (1/3)
 - ~Day per simulation

- **Analysis**
 - Density along “skewers” calculated on-the-fly
 - Cross-correlations along nearby lines-of-sight in post processing
Ly-α BAO studies

- **BOSS**: Cross-correlation along pairs of QSO
- DM only simulation, some gas physics in post processing
- Can test noise/error scenarios
Slide

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

- **Initializer** will use 6048 processors.
- 6048^3 grid
- Decomposing into slabs...done

sigma B = 0.860800, target was 0.808090
redshift: 2.11.000000; growth factor = 0.860321; derivative = 9.755618

- Min and max value of density in k space: -306.81 394.242
- Average value of density in k space: 4.91844e-07

[heitmann@rr-fe4 2PPN.6048.NEW]$ showq

Active Jobs

<table>
<thead>
<tr>
<th>JOBID</th>
<th>USERNAME</th>
<th>STATE PROCS</th>
<th>REMAINING</th>
<th>STARTTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>17231</td>
<td>heitmann</td>
<td>Running 12996</td>
<td>7:02:48 Thu Sep 24 15:27:59</td>
<td></td>
</tr>
</tbody>
</table>

1 active job

12696 of 12112 processors in use by local jobs (99.87%)
3021 of 3028 nodes active (99.77%)

Eligible Jobs

<table>
<thead>
<tr>
<th>JOBID</th>
<th>USERNAME</th>
<th>STATE PROCWS</th>
<th>WCLIMIT</th>
<th>QUEUETIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 eligible jobs

Blocked Jobs

<table>
<thead>
<tr>
<th>JOBID</th>
<th>USERNAME</th>
<th>STATE PROCWS</th>
<th>WCLIMIT</th>
<th>QUEUETIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 blocked jobs

Total job: 1

[heitmann@rr-fe4 2PPN.6048.NEW]$ showq

Active Jobs

<table>
<thead>
<tr>
<th>JOBID</th>
<th>USERNAME</th>
<th>STATE PROCWS</th>
<th>REMAINING</th>
<th>STARTTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>17231</td>
<td>heitmann</td>
<td>Running 12996</td>
<td>7:01:07 Thu Sep 24 15:27:59</td>
<td></td>
</tr>
</tbody>
</table>

1 active job

12696 of 12112 processors in use by local jobs (99.87%)
3021 of 3028 nodes active (99.77%)

Eligible Jobs

<table>
<thead>
<tr>
<th>JOBID</th>
<th>USERNAME</th>
<th>STATE PROCWS</th>
<th>WCLIMIT</th>
<th>QUEUETIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 eligible jobs

Blocked Jobs

<table>
<thead>
<tr>
<th>JOBID</th>
<th>USERNAME</th>
<th>STATE PROCWS</th>
<th>WCLIMIT</th>
<th>QUEUETIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 blocked jobs

Total job: 1

[heitmann@rr-fe4 2PPN.6048.NEW]$
P³M Commissioning
Cell

- Code comparison (256^3) < 1% agreement

- Tests at scale
 - Roadrunner
 - 4 Gpc/h side length
 - 64 billion particles
 - 1000 nodes (1/3)
 - Cerrillos (360 nodes, open network)
 - 2 Gpc/h side length
 - 8 billion particles
 - 128 nodes
 - Both
 - ~5-10 kpc/h force resolution
 - 500x3 time steps
 - ~Week (+queue)
 - Verifying results

1/512 of 8 billion particle run
OpenCL

- **Initial port of Particles class by summer student**
 - Quicker/easier development than Cell (data transfers)

- **SC10 demo**
 - Calculation in real time (small problem size)
 - Mix of NVIDIA and ATI hardware
 - Interactive 3D visualization in real time

- **Initial performance not awful**
 - Fast on NVIDIA
 - ATI needs improvement (we have some ideas)

- **Kernels**
 - Single kernel with optional vectorization?
 - Tune kernels for each hardware?
 - Settle datastructures
Future

- **Cell**
 - Debugging speed improvements (3x faster)
 - Clean up code from beta to 1.0

- **OpenCL**
 - Improve code from demo to production
 - Should soon have access to a machine large enough for real tests

- **Local tree solver (CPU)**
 - Data structures in place (threaded tree)
 - Need to implement force solve walk

- **Early Science Program on Argonne BG/Q**
 - OpenMP thread some operations (planning)
 - P^3M? Tree? Both?

- **Baryon physics**
 - Exploring methods