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Standard General Relativity

e Hilbert-Einstein action
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F(R) gravity theories
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candidates

® Solar system observations.

* Existence of stars and compact objects

® SN Ia observations

® QGravitational waves (Binary pulsar’s observations)

o ETC.
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Equivalence with Scalar Tensor Theories (STT)

* At the moment, most of the works in f(R), had been made by using
this equivalence.

® Under this approach the potential asociated is ill defined

» Starobinsky » Miranda et al. » Hu & Sawicki
7 R? )" R C, R m?2
f(R) =R+ AR, 1+¥ i f(R)=R-aR. In 1+E f (R) = -m? z
C2 (V 2 ) e 1
m
-1 -0.5 0 0.5 |
08t ) ) 1038
5’: ---------- ‘ —;:—“"_‘.:?—"-""""::
~ ~= 101 0.6
:f 0005}
il AN I [
s | = e 096098 1
E‘ &.‘.‘. \‘\ 0 2
g 4
>
0 0




The controversy:
Existence of neutron stars in f(R) gravity

* The conclutions obteined with the standard approach are rather
questionble.

e Kobayashi and Maeda in 2008, analized neutron
stars in Starobinsky’s model.

They found that this kind of objects can not exist for
Starobinsky’s model (incompressible fluid).

Ricci scalar diverge inside the star.

e Babichevand Langlois in 2010, work in a similar analysis for compact objects
in Starobinsky’s model but using state equations more realistics, they found:

* Ricci scalar don’t diverge inside the star so this kind of object could exist in f(R) gravity

e Both analysis use the equivalence with scalar tensor theories, use the same
f(R) model and they found results in opposite directions.

e This problem is one motivation to study f(R) theories taking another point of view




A robust approach to f(R) gravity

* Asimple idea:

e We consider f(R) gravity without the mapping to their scalar-tensor
counterpart, but using the Ricci scalar as an “extra” degree of freedom.

It is straightforward to write the f(R) field equation in the following way
SRGab — [RRVaVR — [rrrR(V.R)(VLR)
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Taking the trace of this equation yields:
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And using this in the field equation we find
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These last two equations are the basic equations for f(R) gravity that we
propose to use in every application.



Static and spherically symmetric spacetimes

* Inorder to test our approach, we consider a static and spherically symetric

P ds? = —n(r)dt? + m(r)dr? + r2(df? + sen?0d?)

* So, using equations proposed we have:
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* The componets rr, tt and 66 of the field equations give us the next differential
equations:
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Static and spherically symmetric spacetimes

* Inorder to test our approach, we consider a static and spherically symetric
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Solving the equations

*  We can note that the diferential equations for n, m and R have the form:

%:F(Yi,f) y, =m,n,n,R,R"
X

e In order to solve this equations a Runge-Kutta algorithm is implemented in a FORTRAN
code.
e Another equation wich is necesary is Tolman-Oppenheimer-Volkoff equation:
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e Some boundary conditions must be supplied, in this case we have
e Regularity conditions, if r=0 then m'=n'=o0

e Asymptotic conditions R— R:

e In order to obtein realistic neutron stars we faces a technical difficulty:
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Case |: Miranda et al f(R) model
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No singularity in the RICCI scalar ¢
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Conclusion

We have devised a straigthforward and robust approach to f(R)
gravity without resorting to the usual mapping to STT.

With this method is posible to analyze in a rather transparent and
well defined way several aspects of these alternative theories.

In particular we focused on the existence of relativistic extended
objects. We found that, for some f(R) models, such objects can be
constructed without ambiguity.

Building realistic neutron stars with a realistic de Sitter
background in f(R) gravity still remains a technical callenge.

In a near future we plan to study in more detail this issue with
other aspects of f(R) gravity using our approach.



