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Limited options	


•  Beyond a certain scale, linear perturbation theory 

breaks down 
–  Definition of “non-linear scale”? 

•  At this point we have few options: 
–  Analytical models of non-linear growth. 

•  Zel’dovich approximation. 
•  Spherical top-hat collapse. 

–  Perturbation theory. 
•  Realm of validity?  Convergence criterion? 
•  Good for small corrections to almost linear problems. 

–  Direct simulation. 
•  Numerical convergence. 
•  What models to run? 
•  Missing physics. 



Zel’dovich approximation	


•  Assume particles move in a straight line with their 

linear perturbation theory velocity. 
•  Defines a mapping from initial (Lagrangian) position, 

q, to final (Eulerian) position, x: 
–  x=q+Ψ  with  Ψ(q,t)=D(t)Ψ(q) and Ψi=dΦ/dqi 

‒  Ψk = -ik/k2 δk 

•  If the initial field is uniform, the final density is the 
Jacobian of this mapping. 
‒  ρ~[(1-Dα)(1-Dβ)(1-Dγ)]-1 

‒  α,β,γ e-values of –d2Φ/dqidqj 
•  Collapse takes place first along largest e-

value (pancake/sheet), then middle (filament) 
then final (halo). 



The cosmic web	


The Zel’dovich approximation, plus the statistics of Gaussian fields, 

qualitatively describes large-scale structure.	





Numerical simulations	


•  Our ability to simulate structure formation has increased 

tremendously in the last decade. 
•  Direct simulation of the N-body problem 

–  Begin at early times, but during matter domination, by displacing particles 
from an initial grid using 1LPT or 2LPT. 

–  Monte-Carlo integration of the Vlasov equation using “super-particles” which 
move along the characteristics. 

–  Soften the forces to avoid particle-particle scattering or integrating 
unphysical, tight, orbiting particles. 

–  Want to approach the “fluid” limit with very large N. 
–  Pure N-body codes scale “almost” perfectly. 

•  Our understanding of -- or at least our ability to describe -- 
galaxy formation has also increased dramatically. 

–  Most cosmology probes observe galaxies. 
–  The fundamental unit of structure theoretically is the dark matter halo. 
–  Galaxies live in dark matter halos in ways we increasingly understand. 



Numerical convergence	


•  Numerous tests of numerical convergence can be 

found in: 
–  Heitmann et al. (2010; ApJ, 715, 104) 
–  Heitmann et al. (2010; ApJ, 705, 156) 

•  Need to worry about 
–  Starting redshift and method. 
–  Force accuracy and softening. 
–  Time stepping. 
–  Box size. 
–  Number of particles. 
–  Method of computing statistic from particles. 
–  How to choose which cosmologies to run. 



Accuracy - currently demonstrated	



All codes started from the same ICs and analyzed with 
the same P(k) codes. 

Updated from 
Heitmann et al. (2007) 

Only a sub-
sample of the 
codes are 
shown here. 



Extra physics	


•  As we go to smaller scales, we must go beyond the “pure” N-

body problem and include additional physics. 
–  Hydrodynamics solvers well developed. 
–  Gas cools dramatically in deep potential wells, reaching high 

densities in a clumpy, multiphase, turbulent, magnetized ISM where 
it can form stars, which give off winds and radiation and go 
supernova injecting momentum and energy into the surrounds and 
have active galactic nuclei which can impart energy to their 
enviroments, … 

•  There is little scale separation between including “gas” physics 
and including star formation, feedback, etc. so results typically 
depend on sub-grid models. 



An example	



One possibility, from 
Jing et al. (2006), for 
the effects of baryons 
(red) and baryons 
including star-
formation and 
feedback (green) on 
the total matter 
(solid), dark matter 
(dotted) and gas 
(dashed).	





Characteristics of LSS	


•  Large-scale structure forms a beaded 

filamentary web of dark matter halos. 
– Number of halos vs. mass (etc.). 
– Spatial distribution of halos (vs. ?). 
– Properties of DM halos. 
– Beyond DM. 



Halo abundance	



•  Almost all of the mass resides in (approximately) virialized halos. 
•  Space density of halos depends primarily (exclusively?) on mass. 
•  There are a large number of low mass halos and few high mass 

halos. 
–  Very roughly dn ~ m-2 e-m 

–  As time proceeds the “characteristic” mass scale increases. 
•  The mass function is almost cosmology independent (in scaled units). 

–  This universality is not fully understood. 
•  Mass functions are used in many applications in cosmology. 



Mass function	



Bhattacharya et. al. 9

FIG. 5.— Ratio of the mass function data to the z = 0 fit of Equation (12)
(reference flat red line). The z = 1 and z = 2 datasets demonstrate that redshift
evolution is important and must be taken into account; the curves show the
corresponding fits following the time-dependence as parameterized in Equa-
tions (14). The lower panel shows the ratio of the measured mass function at
the three different redshifts to the corresponding analytic fits.

final set of parameters is the average of the three values ob-
tained using redshift outputs in pairs. Figure 5 shows that the
power law model of Equations (14) is able to capture the red-
shift evolution with an accuracy of better than 3% within the
range of 0.6 ≤ 1/σ ≤ 2.4. Note that the massive halos in our
simulation runs do not showmuch redshift evolution, indicating
that the mass function of the massive halos is a better approx-
imation to universal behavior over the redshift range z = 0! 2.
Consequently we find that only two of the four parameters of
Equations (14) show any redshift evolution. The best fit val-
ues for the parameters αi describing the redshift evolution are
α1 = 0.11, α2 = 0.01, α3 = 0.0, and α4 = 0.0. To recap, our
analytic best-fit to the mass function data uses one extra shape
parameter compared to ST to match the z = 0 data, and then in-
troduces a simple z-dependence (two more parameters) to cap-
ture non-universal behavior.
High-statistics studies of the evolution of the FOF mass func-

tion have been carried out previously. In an investigation focus-
ing mainly at high redshifts, to explain the violation of univer-
sality, Reed et al. (2007) proposed an effective spectral slope
neff set by the halo radius, parameterized as

neff = 6
d lnσ!1

d lnM
!3. (15)

This new effective slope induces a redshift dependence in the
mass function. However, as shown in Figure 6, the analytic
fit of Reed et al. (2007) is not in good agreement with our re-
sults. This discrepancy indicates that high redshift evolution of
the mass function is slower compared to that at lower redshifts.
Crocce et al. (2010) also use a simple power-law form to fit for
redshift evolution and their results are significantly closer to
ours, except at very high masses, where the discrepancy can be
traced to their use of an approximate transfer function 1 and a
small systematic offset in their fitting procedure at high masses
1 M. Crocce, private communication

FIG. 6.— Redshift dependent mass function fits as introduced by Reed et al.
(2007) and Crocce et al. (2010) compared with the numerical data of this work.
Aside from disagreement in the overall shape, the results of Reed et al. (2007)
underestimate the amount of evolution indicating that high redshift evolution
of the mass function is slower compared to that at lower redshift. The agree-
ment with Crocce et al. (2010) is better (at the 4-5% level), except for the
runaway at high masses (see discussion in Section 4.1).

FIG. 7.— Halo mass function as measured in our simulations at three differ-
ent redshifts, z = 0, 1, and 2 along with the analytic fit at each redshift.

(Cf. Section 4.1). The expressions for the fitting functions of
Reed et al. (2007) and Crocce et al. (2010) are given in Table 3.
Figure 7 shows the abundance dn/d lnM as measured in our
simulation along with the analytic fits. Figure 8 summarizes
the results from this section, showing the mass function at dif-
ferent redshifts and our best fit results.

4.3. Mass function-derived large-scale halo bias
The evolution of the spatial distribution of halos has been

studied in detail in Cole & Kaiser (1989) and subsequently in

Bhattacharya++10	



Note the 
dynamic 
range in 
this figure! 



Halo abundance: scaled units	


Tinker++08	



dn

dM
= f(σ)

ρ̄

M

d lnσ−1

dM



Other fitting forms	


8 Mass Function Predictions Beyond ΛCDM

TABLE 3
MASS FUNCTION FITTING FORMULAE DERIVED IN PREVIOUS STUDIES

Reference Fitting function f(σ) Mass Range Redshift range

Sheth & Tormen (2002) fST (σ) = 0.3222
√

2(0.75)
π

exp
[

! 0.75δ
2
c

2σ2

]

[

1+
(

σ
2

0.75δ2c

)0.3
]

δc
σ

Unspecified Unspecified

Jenkins et al. (2001) 0.315exp
[

!| lnσ!1 +0.61|3.8
]

!1.2≤ lnσ!1 ≥ 1.05 z= 0-5

Warren et al. (2006) 0.7234
(

σ!1.625 +0.2538
)

exp
[

! 1.1982
σ2

]

(1010 !1015) h!1M! z=0

Reed et al. (2007) 0.3222
√

2(0.707)
π

[

1+
(

σ
2

0.707δ2c

)0.3
+0.6G1(σ)+0.4G2(σ)

]

!0.5≤ lnσ!1 ≥ 1.2 z=0-30

× δc
σ
exp

[

! 0.764δ
2
c

2σ2 ! 0.03
(ne f f +3)2(δc/σ)0.6

]

Manera et al. (2010) fST (σ) = 0.3222
√

2a
π
exp

[

! aδ2c
2σ2

][

1+
(

σ
2

aδ2c

)p]
δc
σ

(3.3× 1013!3.3× 1015) h!1M! z=0-0.5

Crocce et al. (2010) A(z)
[

σ!a(z) +b(z)
]

exp
[

! c(z)
σ2

]

(1010 !1015) h!1M! z=0-1

Note. — Various fits from previous studies shown in Figure 4 and 6 for friends-of-friends halos of linking length b = 0.2 are listed. For Manera et al. (2010),
the parameter values are (a, p)= (0.709, 0.248) at z=0 and (0.724, 0.241) at z=0.5. For Crocce et al. (2010), the parameter values are A(z) = 0.58(1 + z)!0.13,a(z) =
1.37(1+ z)!0.15 ,b(z) = 0.3(1+ z)!0.084,c(z) = 1.036(1+ z)!0.024. For Reed et al. (2007), G1(σ) = exp

[

! (lnσ
!1!0.4)2
2(0.6)2

]

and G2(σ) = exp
[

! (lnσ
!1!0.75)2
2(0.2)2

]

with AW = 0.7234, b = 1.625, c = 0.2538, and d = 1.1982; these
values being obtained by fitting to simulation data at z = 0.
While adequate as a fitting form, Equation (11) diverges when
the normalization condition is imposed [Equation (8)]. In addi-
tion, as shown in Figure 4, this particular fit also severely un-
derestimates the mass function at high masses, by up to∼ 30%.
We present a new fitting function for f (σ). This is the sim-

plest ST modification that does not diverge but adds one extra
parameter, q̃0 (for q̃0 = 1 we recover the ST mass function):

fmod(σ,z= 0) = Ã0

√

2
π
exp

[

!
ã0δ2c
2σ2

]

[

1+
(

σ2

ã0δ2c

) p̃0
]

(

δc
√
ã0

σ

)q̃0

.

(12)
We use a χ2 technique to determine the best fit f (σ) that matches
the mass function data obtained by combining all of the ΛCDM
runs. That is, we minimize

χ2 =
N
∑

i=1

f (σ)mod ! f (σ)data
(∆ f (σ)data)2

, (13)

where f (σ)mod, f (σ)data and∆ f (σ)data are given by Equations (12),
(10), and (A4) respectively.
Minimizingχ2 gives the best fit parameter values: Ã0 = 0.333,

ã0 = 0.788, p̃0 = 0.807, and q̃0 = 1.795 with a χ2 per degree of
freedom of 1.15. The subscript “0” indicates that the best fit
values are specified at z = 0. The results are summarized in
Table 4. As mentioned above, this expression does not diverge
when the normalization condition is imposed, however, the best
fit does not lead to a normalization of unity. As shown in Fig-
ure 5, this modified expression agrees with the simulation data
to better than 2% accuracy at z = 0. As further discussed in Sec-
tion 4.2 a simple redshift dependence has to be introduced into
the fitting function to obtain agreement at the same accuracy
level at higher redshifts.

TABLE 4
MASS FUNCTION FITTING FORMULA DERIVED IN THIS STUDY,
VALID OVER A MASS RANGE OF (6× 1011 !3× 1015) M! AND

OVER A REDSHIFT RANGE OF Z=0-2.

fmod(σ,z) = Ã
√

2
π
exp

[

! ãδ2c
2σ2

]

[

1+
(

σ
2

ãδ2c

)p̃
]

(

δc
√
ã

σ

)q̃

Redshift Evolution

Ã = 0.333
(1+z)0.11 , ã =

0.788
(1+z)0.01 , p̃ =

0.807
(1+z)0.0 , q̃ =

1.795
(1+z)0.0

4.2. Redshift Evolution and Universality
The z = 0 mass function fit of Section 4.1 has a default uni-

versal form. However, the mass function is known to deviate
from universality – as a function of redshift – for ΛCDM cos-
mologies. As shown in Figure 5, this deviation can be as much
as 10% between redshifts z = 0! 2. In this section we extend
our fitting function to include the redshift evolution of the mass
function. We parameterize the possible redshift evolution of
each parameter via a simple power-law form

Ã = Ã0/(1+ z)α1,
ã = ã0/(1+ z)α2,
p̃ = p̃0/(1+ z)α3,
q̃ = q̃0/(1+ z)α4. (14)

In order to ensure that the expression for the redshift evolution
reproduces the mass function at any intermediate redshift when
interpolated or even extrapolated, we fit two redshift outputs at
a time. Thus we have three values for each parameter. The

(A detailed study of universality and numerical issues can be found in	


Bhattacharya++10 from which this table is taken )	



f(σ) =
M

ρ̄

dn

d lnσ−1
,

� ∞

0
d lnσ f(σ) = 1



Excursion set theory vs. peaks	


•  Excursion set formalism 

–  The most popular “theory”. 
–  The fraction of mass in halos more massive than M is related 

to the fraction of volume in which the smoothed initial density 
field is above some threshold, δc. 

–  Mass function related to random walk. 
•  Press-Schechter 1974; Bond, Cole, Efstathiou & Kaiser 1991. 

–  Spherical collapse vs. elliptical collapse approx. 
•  Mo & White, Sheth & Tormen, Zhang & Lam, … 

–  How to deal with “non-locality” of halo collapse. 
•  Statistics of (Gaussian) peaks plus a model for halo 

collapse (spherical or ellipsoidal). 
•  Bardeen, Bond, Kaiser & Szalay 1986 

–  Based on Rice (1944; 1945) who studied 1D Gaussian fields as models of 
noise in communications devices. 

•  Bond & Myers 1996. 
•  Dalal, Lithwick & White 201X. 



Excursion set theory vs. peaks	



•  Allow computation of mass function from statistics of 
initial field. 
–  Choose a filter shape, and compute integrals of linear theory 

power spectrum and plug in formulae. 
•  Not all methods self-consistent. 

–  Reasonable success for mass function often improved by 
adjusting formulae to “fit” N-body simulations. 

–  Less success for conditional mass function, merger rates 
etc. 

–  Beware when extrapolating! 



Halo bias	


•  The clustering of the rare, massive dark matter halos is enhanced 

relative to the general mass distribution 
–  Kaiser 1984; Efstathiou++88; Cole & Kaiser 1989; Bond++91; Mo & White 

1996; Sheth & Tormen 1999; …; Tinker++10; ... 

The clustering of rare halos 
thought to host quasars (here 1012 
and 1012.5 Msun/h) at z=3-4 is two 
orders of magnitude stronger than 
the clustering of the DM!	





Halo bias	


•  This enhanced clustering is known as “bias”. 
•  Bias depends on scale [b(r)], but at very large scales it becomes scale-

independent [b]. 
–  Bias, b, depends primarily on halo mass or “rarity”. 

•  In simplest models b=1+(ν2-1)/δc, where ν=δc/σ(M). 
•  For more accuracy, use N-body-calibrated fitting function. 
•  Behavior at “extremes” can depart from fitting functions! 

–  Numerical simulations now large enough to test for the dependence 
on halo formation history and other properties. 

•  Dependencies on formation redshift, internal structure, and spin. 
•  Gao++05; Wechsler++06; Harker++06; Bett++07; Wetzel++07; 

Jing++07; Gao&White07; Angulo++08 



Halo bias in simulations	
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Halo bias 
increases with 
increasing halo 
mass at fixed 
redshift, or with 
increasing 
redshift at fixed 
mass.	





Assembly bias	


Gao & White (2007)	



Solid (dashed) lines show halos in lower (upper) 20% of 
halos split on property labeled. 	





Assembly bias	


•  Assembly bias is quite difficult to explain in the 

“standard” excursion set formulation. 
–  Mass function is fraction of random walks reaching an 

absorbing barrier by mass M. 
–  Bias is dependence of mass function on large-scale density 

(early part of the walk). 
–  Assembly bias very hard to explain in this picture. 

•  Gao++05, Mo++05, Sandvik++07, Desjacques08, …  

•  Simulations did not initially shed light on explanation 
for assembly bias. 

•  Now understand that assembly bias is a simple 
consequence of non-linear collapse from Gaussian 
initial conditions. 
–  Dalal++08. 



Assembly bias: high mass.	


•  Later forming, high mass halos are more clustered 

than typical halos of the same mass. 
–  Also dependence on concentration. 

•  Massive halos collapse almost spherically from rare 
peaks in ICs. 
–  Collapse reasonably explained by STHC. 

•  For Gaussian field, bias depends on curvature, 
s=d<δ>/dlnM, of peak (as well as height). 
–  Peak curvature is “environment”: δb=δpk + s dlnM + … 
–  Peaks with smaller |s| have larger background densities. 

b− 1 ≈ 1
σ

ν − �νx�x
1− �νx�2 , ν ≡ δ

σδ
; x ≡ s

σs

(Cross-correlation coefficient)	





Bias: high mass	
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b E

Dalal++08	

 Dependence of halo bias 
on peak curvature from 
simulations (points) 
compared to the 
prediction from Gaussian 
peaks theory (line) for a 
power-law model.	


Assembly history related 
to run of δ with M – 
accretion rate related to 
peak curvature!	



~ -[d(logM)/d(log a)]-1	





Assembly bias: low mass	


•  Oldest, most concentrated, low mass halos are more 

than twice as clustered as the youngest halos of the 
same mass. 

•  Youngest ~80% of halos have 
–  b~1-δc

-1~0.4 (as expected). 

•  Oldest 20% of low mass halos act like test particles 
(b->1) 
–  Most of these are associated with nearby, high-mass halos. 
–  Early formers who’s growth is stunted by “hot” environments 

of massive neighbors. 



DM halos	


•  Generally triaxial spheroids. 
•  More elongated at 

–  Smaller radii. 
–  Larger redshifts. 
–  Higher mass. 

•  Approximately in virial equilibrium. 
•  Aligned with the filamentary, cosmic web which feeds 

halo growth. 
•  Average mass accretion exponential. 

–  In EPS formalism dM=-f(M)M dδc, with f(M)~constant. 

•  Spin parameter, λ, grows significantly in major 
mergers, slowly declines in accretion. 



Dynamical state	


(White 2002)	



Roughly 
isothermal, 
roughly 
virialized, 
self-bound 
objects.	





DM halos are aspherical and have 
significant substructure	



Region above 
a density 102 
times the 
background 
density.	


Color: log-
density.	





Spherical “NFW” profile	


Tinker++08	
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ρ(x = r/rs) ∝ x−1(1 + x)−2



A 1-parameter family	


•  Find c=rvir/rs is a function of M. 

–  More massive halos less concentrated. 
–  c, like M, depends on definitions! 
–  c~M-0.15 

–  Large, log-normal scatter in c.  

•  The inner, r -1, part of the halo forms early and 
rs stays ~constant. 
–  Subsequent accretion kept away by angular 

momentum barrier. 
–  Concentration, c=rvir/rs ~ (1+z)-1. 



Other forms	


•  A generalized NFW makes “-1” and “-2” variable. 
•  Einasto profile: 

•  Note no cusp! 
•  Important new insights in Lithwick & Dalal (2010). 

–  Building on earlier work by Fillmore & Goldreich and 
Bertschinger. 

•  The NFW profile is “transitional”. 
–  r-3 slope comes from continued accretion of material.  This 

stops in DE-domination. 
–  Busha, Evrard & Adams (2007). 

•  Exponential truncation of NFW profile at large radius. 

ρ ∝ exp

�
−dn

��
r

re

�1/n

− 1

��
, n ≈ 5− 10



Subhalos	


•  A generic prediction of hierarchical theories, 

such as CDM, is that the virialized regions of 
DM halos contain subhalos. 
–  Self-gravitating, bound clumps of mass. 

•  Subhalos account for O(10%) of halo mass. 
•  Luminous galaxies form via the cooling and 

condensation of gas in subhalos. 



Subhalos	


•  Density profiles of subhalos similar to that of halos, but they can 

be truncated. 
•  Subhalos track DM closely in terms of density and velocity. 

–  Trends of central concentration and velocity bias with ratio of 
subhalo to host halo mass. 

–  Depends on how subhalos are selected. 
•  Beyond a certain point, the number of subhalos above a given 

mass grows linearly with host halo mass. 
–  Length of “plateau” set by dynamical friction and mean 

density of collapsed structures. 
–  Subhalo mass function and halo mass function are “scaled” 

versions of each other. 

dnsat

dMsat
∼

�
Mhost

Msat

�2

, Msat �Mhost



Thank you!	



•  I would like to thank 
– The participants. 
– The other lecturers. 
– The organizers. 
– The staff. 

•  for making this a pleasant, informative and 
productive meeting. 



The End	






