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Non-linearities and BAO	




Acoustic oscillations	


First “compression”,	

at kcstls=π.  Density 
maxm, velocity null.	


First “rarefaction” 
peak at kcstls=2π	


Velocity maximum	


Acoustic scale is set by the sound horizon at last scattering:  s = cstls	




CMB calibration	

•  Not coincidentally the sound horizon is 

extremely well determined by the structure of 
the acoustic peaks in the CMB. 

Dominated by uncertainty in 
ρm from poor constraints near 
3rd peak in CMB spectrum.	

(Planck will nail this!)	


WMAP 5th yr data	




Baryon oscillations in P(k)	


•  Since the baryons contribute ~15% of the total matter density, the 
total gravitational potential is affected by the acoustic oscillations 
with scale set by s. 

•  This leads to small oscillations in the matter power spectrum P(k). 
–  No longer order unity, like in the CMB 
–  Now suppressed by Ωb/Ωm ~ 0.1 

•  Note: all of the matter sees the acoustic oscillations, not just the 
baryons. 
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Divide out the gross trend …	

A damped, almost harmonic sequence of “wiggles” in the power 

spectrum of the mass perturbations of amplitude O(10%). 



In configuration space	

•  The configuration space picture offers some important insights.  
•  In configuration space we measure not power spectra but correlation 

functions: ξ(r)=∫ P(k)eikrd3k=∫ Δ2(k)j0(kr) dlnk.. 
•  A harmonic sequence would be a δ-function in r, the shift in frequency 

and diffusion damping broaden the feature. 

Acoustic feature at 
~100 Mpc/h with 
width ~10Mpc/h 
(Silk scale)	




Effects of non-linearity on BAO	

•  Non-linear evolution has 3 effects on the 

power spectrum: 
–  It generates “excess” high k power, reducing the 

contrast of the wiggles. 
–  It damps the oscillations. 
–  It generates an out-of-phase component. 

•  In configuration space: 
–  Generates “excess” small-scale power. 
–  Broadens the peak. 
–  Shifts the peak. 



Non-linearities smear the peak	


Broadening of feature due 
to Gaussian smoothing and 
~0.5% shift due to mode 
coupling. 

Loss of contrast and 
excess power from 
non-linear collapse. 



Understanding “shifts”	

•  We want to fit for the position of the acoustic 

feature while allowing for variations in the 
broadband shape (due e.g. to biasing). 
–  Pfit(k) = B(k) Pw(k,α) + A(k) 
–  B(k) and A(k) are smooth functions. 

•  Can take B(k)=const and A(k) as a spline, polynomial, Pade, ... 

‒  α measures shift relative to “fiducial” cosmology. 
–  Pw(k,α) is a template. 

•  Numerous arguments suggest Pw(k,α)=exp[-k2Σ2/2]PL(k/α). 
•  Take Σ to be a free parameter, perhaps with a prior. 

•  How does this do? 
Argument from 
Padmanabhan & White (2009);	

see also Smith++08.	




Measuring shifts in cCDM	

•  Any “shift” in the acoustic scale is small in 
ΛCDM, and therefore hard to study. 

•  Work with a “crazy” cosmology 
‒  Ωm=1, ΩB=0.4, h=0.5, n=1, σ8=1. 
–  Sound horizon 50h-1Mpc, not 100h-1Mpc. 

•  The fitted shifts are (α-1 in percent): 
z	
 DM	
 xδL	
 w/P22	


0.0	
 2.91 ± 0.20	
 -0.2 ±0.1	
 -0.03 ± 0.16	

0.3	
 1.88 ± 0.12	
 -0.2 ±0.1	
 -0.38 ± 0.09	

0.7	
 1.17 ± 0.07	
 -0.1 ±0.1	
 -0.12 ± 0.05	

1.0	
 0.88 ± 0.06	
 -0.1 ±0.1	
 -0.04 ± 0.04	




Shifts vs time	


Amplitude of the shift 
vs. time (redshift) for 
the mass.	


Shifts are consistent 
with D2 scaling 
(dotted) suggesting an 
origin from 2nd order 
terms …	




Where do the shifts come from?	


z	
 DM	
 xδL	
 w/P22	


0.0	
 2.91 ± 0.20	
 -0.2 ±0.1	
 -0.03 ± 0.16	

0.3	
 1.88 ± 0.12	
 -0.2 ±0.1	
 -0.38 ± 0.09	

0.7	
 1.17 ± 0.07	
 -0.1 ±0.1	
 -0.12 ± 0.05	

1.0	
 0.88 ± 0.06	
 -0.1 ±0.1	
 -0.04 ± 0.04	


Recall in PT we can write δ=δ(1)+δ(2)+… or	

P = {P11 + P13 + P15 + …} + {P22 + … } = P1n + Pmn.	

We can isolate these two types of terms by considering the 
cross-spectrum of the final with the initial field, which 
doesn’t contain Pmn.	


Shifts in the cross-spectrum are an order of magnitude 
smaller than shifts in the auto-spectrum!	


P1n(k) ∼ PL(k)
� �

k

�
d3qkPL(qk)

�
Fn(· · · )

Broad kernel 
suppresses 
oscillations.	




Mode-coupling terms	


•  The P1n terms are benign. 
•  By contrast the Pmn terms involve integrals of 

products of PLs times peaked kernels. 
•  Example: P22 ~ ∫ PLPL F2 and F2 is sharply peaked 

around q1≈q2≈k/2.  
•  Thus the ∫ PLPL term contains an out-of-phase 

oscillation 
–  PL~ … + sin(kr):  PLPLF2 ~ sin2(kr/2) ~ 1+cos(kr) 

•  Since cos(x)~d/dx sin(x) this gives a “shift” in the 
peak 
–  P(k/α) ~ P(k) - (α-1) dP/dlnk + … 

Recall in PT we can write δ=δ(1)+δ(2)+… or	

P = {P11 + P13 + P15 + …} + {P22 + … } = P1n + Pmn.	




Mode-coupling approximates derivative	


Up to an overall 
factor the mode-
coupling term, P22, is 
well approximated by 
dPL/dlnk.	




Modified template	

•  This discussion suggests a modified 

template, which has just as many free 
parameters as our old template: 

•  This removes most of the shift. 

Pw(k,α) = exp
�
−k2Σ2

2

�
PL(k/α)

+ exp
�
−k2Σ2

1

2

�
P22(k/α) .

z	
 DM	
 xδL	
 w/P22	


0.0	
 2.91 ± 0.20	
 -0.2 ±0.1	
 -0.03 ± 0.16	

0.3	
 1.88 ± 0.12	
 -0.2 ±0.1	
 -0.38 ± 0.09	

0.7	
 1.17 ± 0.07	
 -0.1 ±0.1	
 -0.12 ± 0.05	

1.0	
 0.88 ± 0.06	
 -0.1 ±0.1	
 -0.04 ± 0.04	


Padm
anabhan &

 W
hite (2009)	




Biased tracers?	

•  In order to remove the shift we needed to 

know the relative amplitude of P11 and P22. 
–  For the mass, this is known. 

•  What do we do for biased tracers? 
–  Eulerian bias 

–  Lagrangian bias 
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Mode-coupling integrals	

Qn(k) =

k3

4π2

� ∞

0
dr PL(kr)

� 1

−1
dxPL(k

�
1 + r2 − 2rx) �Qn(r, x)

�Q1 = r2(1−x2)2

y2 , �Q2 = (1−x2)rx(1−rx)
y2 ,

�Q3 = x2(1−rx)2

y2 , �Q4 = 1−x2

y2 ,

�Q5 = rx(1−x2)
y , �Q6 = (1−3rx)(1−x2)

y ,

�Q7 = x2(1−rx)
y , �Q8 = r2(1−x2)

y ,
�Q9 = rx(1−rx)

y , �Q10 = 1− x2,
�Q11 = x2, �Q12 = rx, �Q13 = r2

(Matsubara 2008)	




Out-of-phase?	


The numerous combinations that come in are also well 
approximated by the (log-)derivative of P11!  All of these terms can 

be effectively written as:	


Ph = exp
�
−k2Σ2

2

�
[B1PL + B2P22] .



Size of the shifts?	

•  Simple model explains B1-B2 relation. 

–  True for a variety of cosmologies, including ΛCDM. 
–  Can also be measured from simulations (using some tricks). 

•  For ΛCDM the shifts are: 
‒  α-1~0.5% x D2 x B2/B1 

Shifts at z=0 for	


Halos of mass M	

Halos above M	

N~[1+M/M1]	


At higher z the shift decreases as D2.	


Recall, the final error in BAO scale is the 
uncertainty in this correction, not the size 
of the correction itself!	




Redshift space	


•  In resummed LPT we can also consider the 
redshift space power spectrum for biased 
tracers. 

•  For the isotropic P(k) find a similar story 
though now the scaling coefficients depend 
on f~dD/dlna. 
–  Expressions become more complex, but the 

structure is unchanged. 
•  The amplitude of the shift increases slightly. 



Perturbation theory & BAO	

•  Meiksin, White & Peacock, 1999 

–  Baryonic signatures in large-scale structure (SPT) 

•  Crocce & Scoccimarro, 2007 
–  Nonlinear Evolution of Baryon Acoustic Oscillations 

•  Matsubara, 2008ab 
•  Jeong & Komatsu, 2006, 2009 

–  Perturbation theory reloaded I & II 

•  Pietroni, 2008; Lesgourgues et al. 2009; Anselmi et al. 2010; Elia et al. 
2010 

–  Flowing with time, resummation schemes. 

•  Padmanabhan & White 2009; Padmanabhan et al., 2009; Noh et al. 
2009 

–  Calibrating the baryon oscillation ruler for matter and halos 
–  Reconstructing baryon oscillations: A Lagrangian theory perspective 
–  Reconstructing baryon oscillations. 

•  Nishimichi et al., 2007, 2010; Taruya et al., 2009, 2010. 
–  Characteristic scales of BAO from perturbation theory 
–  Non-linear Evolution of Baryon Acoustic Oscillations from Improved Perturbation 

Theory in Real and Redshift Spaces 



Reconstruction���
an analytic understanding?	




Reconstruction and LPT	

•  Recall that the effect of non-linearity was to broaden 

(and slightly shift) the acoustic peak. 
•  The broadening was equal to the Zel’dovich 

displacement. 
–  Much of the  broadening comes from large scales. 

•  Since those scales are measured by the survey, one 
could hope to “reconstruct” the initial, unbroadened 
feature. 
–  Eisenstein, Seo, Sirko & Spergel (2007). 

•  What does this procedure do? 
–  Lagrangian perturbation theory is almost perfectly suited to 

studying reconstruction. 



Contributions to the displacement	




Reconstruction procedure	

1.  Smooth the density field 

•  δ(k) -> δ(k) S(k) 

2.  Compute the negative Zel’dovich displacement, s, 
from the smooth field. 

•  s(k) =(-ik/k2) S(k) δ(k)  

3.  Shift particles by s to generate “displaced” field, δd. 
•  In linear theory δd=0. 

4.  Shift spatially uniform grid of points by s to give 
“shifted” field, δs. 

•  In linear theory δs=-δd. 

5.  Define δr=δd-δs (equals δ in linear theory). 
6.  Note: S->0 is equivalent to no reconstruction. 



In pictures	


Initial	
 Recon	
 Final/NL	


Note: the final field has sharper, more pronounced peaks than 
either the initial or reconstructed density fields.	


Noh++09	




Sharpens the peak	


The z=0 
correlation 
function of the 
mass in ΛCDM is 
“sharpened” by 
reconstruction.	


The linear field is 
not fully 
recovered.	




LPT	

•  Recall in LPT 
•  The displaced field is generated by Ψ+s 
•  The shifted field is generated by s. 
•  To lowest order δr=δL. 
•  To next order 

δ(k) =
�

d3q e−ik·q
�
e−ik·Ψ(q) − 1

�

δ(2)
r = δ(2) − 1

2

�
d3k1d3k2

(2π)3
δ(D) (k1 + k2 − k)

× δl(k1)δl(k2) k · L(1)(k1)k · L(1)(k2)
× [S(k1) + S(k2)]

Why does reconstruction help?	




A toy model	

•  Imagine Ψ=ΨL+ΨH both Gaussian and 

uncorrelated. 
‒  ΨL is generated by δlin, 
‒  ΨH contains no BAO.  

P (k) =
�

d3qe−ik·q
��

e−iki∆Ψi(q)
�
− 1

�

�
e−ik·∆Ψ(q)

�
= exp

�
−1

2
kikj �∆Ψi(q)∆Ψj(q)�

�

kikj �∆Ψi(q)∆Ψj(q)� = 2k2
i �Ψ2

i (0)� − 2kikjξij(q)



A toy model	

•  ξij(0)=(δij/2) Σ2, and Σ2≈ΣL

2 

•  Leave zero-lag piece exponentiated: 

•  Now s(k)=-S(k)ΨL(k), so the displaced and 
shifted fields are generated by [1-S]ΨL+ΨH 
and –SΨL. 

P (k) = e−k2Σ2
L/2

�
d3q e−ikiqi ekikjξij(q) .

Pobs(k) = e−
1
2 k2Σ2

LPL(k) + Pmc(k) + · · ·

O(ΨH
2) and O(ΨL

4)	




A toy model	

•  The reconstructed power spectrum is 

–  Pr=(δs-δd)2=Pss+Pdd-2Psd 

•  with: 
–  Pss=exp[-k2Σss

2/2]S2(k) PL(k)+… 
–  Pdd=exp[-k2Σdd

2/2][1-S(k) ]2PL(k)+… 
–  etc. 

•  And modified damping terms (e.g.): 

•  The effect of the S and [1-S] terms and the 
structure of the damping is to “effectively” 
reduce Σ to ~0.5 Σ. 

Σ2
ss =

1
3π2

�
dp S2(p)PL(p)



LPT	

•  A very similar calculation carries through in the full 

LPT, except you have to keep more terms in the 
exponential if things aren’t all Gaussian. 

•  The damping turns out to be the same. 
–  We were working to lowest order in Σ, so this is not 

surprising. 

•  You additionally get the mode-coupling terms. 
–  Slightly painful since you need to redo all of Matsubara with 

3 different spectra. 

•  Find that the mode-coupling term is suppressed. 



The details	
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Noh++09; based on 
Matsubara 07 & 08	


Q(1ddd)
7 (k) =

k3

(2π)2

� ∞

0
dr PL(kr)S̄(kr)

� +1

−1
dµ PL(ky)S̄(ky)S̄(ky) �Q7(r, µ)



LPT agrees with simulations	

Noh++09	


Recon.	


Final	


Displaced	


Shifted	


Matter (z=0)	




Coherence regained	

Noh++09	


The cross-correlation between the initial field 
and the other fields for halos above 1013.	


Final	


Recon	


Shifted	


Displaced	




Out-of-phase term reduced	


Out-of-phase terms in P(k) for halos 
more massive than 1013.	


Linear/2	


Mode 
coupling 
term	


dPL/dlnk	


Recon	




Effects of shot-noise	

•  Within the LPT formalism the effects of shot-noise 

from finite galaxy number density are easy to include. 
•  The largest effect is a change in the damping scale: 

•  where PN=1/(b2n) is the shot-noise power. 
•  Gains saturate around n~10-4 (h/Mpc)3. 

White (2010)	


Σ2
ss → 1

3π2

�
dp S2(p) [PL(p) + PN (p)]

Σ2
dd → 1

3π2

�
dp [1− S(p)]2 PL(p) + S2(p)PN (p) ,




