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Limited options	


•  Beyond a certain scale, linear perturbation theory 

breaks down 
–  Definition of “non-linear scale”? 

•  At this point we have few options: 
–  Analytical models of non-linear growth. 

•  Zel’dovich approximation. 
•  Spherical top-hat collapse. 

–  Perturbation theory. 
•  Realm of validity?  Convergence criterion? 
•  Good for small corrections to almost linear problems. 

–  Direct simulation. 
•  Numerical convergence. 
•  What models to run? 
•  Missing physics. 



Notation	



δ(x) =
ρ(x) − ρ̄

ρ̄
=

δρ

ρ
(x)

δ(k) =
�

d3x δ(x) eik·x

�δ(k)δ�(k�)� = (2π)3δD(k− k�)P (k)

∆2(k) =
k3P (k)

2π2

ξ(x) =
�

d3k

(2π)3
P (k)eik·x

=
�

dk

k
∆2(k)j0(kr)



Linear PT	


•  For many scales and most of age of 

Universe linear perturbation theory is 
valid. 

•  Transfer function, T(k), encodes 14Gyr 
of evolution. 
‒  δtoday(k)~(growth) × T(k)δinit(k). 
– Main features RD->MD->ΛD. 
– Structure only grows when matter 

dominates energy density of Universe. 



Eisenstein (2002)	
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Matter power spectrum: PL(k)	
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Non-linearity	





Scale of non-linearity	


•  There are several ways to define a “scale” of 

non-linearity. 
•  Where Δ2(k)=1 (or ½, or …). 

–  Dangerous when Δ2(k) is very flat. 
•  By the rms linear theory displacement. 

•  Where the 2nd order correction to some 
quantity is 1% (10%) of the 1st order term. 

Rnl ∝
1

k2
nl

∝
�

dk

k

∆2(k)
k2

∝
�

dk P (k)
2	
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Cosmological perturbation theory	
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Perturbation theory	


•  There is no reason (in principle) to stop at 

linear order in perturbation theory. 
–  Can expand to all orders: δ=δ(1)+δ(2)+δ(3)+... 
–  Can sum subsets of terms. 
–  Usefulness/convergence of such an expansion not 

always clear. 
•  Consider only dark matter and assume we 

are in the single-stream limit. 
Peebles (1980), Juszkiewicz (1981), Goroff++(1986),	


Makino++(1992), Jain&Bertschinger(1994), Fry (1994).	


Reviews/comparison with N-body:	


  Bernardeau++(2002; Phys. Rep. 367, 1).	


  Carlson++(2009; PRD 80, 043531)	





Equations of motion	



∂δ
∂τ + �∇ · [(1 + δ)�v] = 0

∂�v
∂τ +H�v +

�
�v · �∇

�
�v = −�∇Φ

∇2Φ = 3
2H

2δ

•  Very familiar looking fluid equations 
o  means we can borrow methods/ideas from other fields. 

•  Note the quadratic nature of the non-linearity. 
•  Since equations are now non-linear, can’t use super-
position of (exact) solutions even if they could be found! 
•  Proceed by perturbative expansion. 

Under these approximations, and assuming Ωm=1	



G
auge?	





Velocities are ≈ potential flow	
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Assume that v 
comes from a 
potential flow (self-
consistent; curl[v]
~a-1 at linear order) 
then it is totally 
specified by its 
divergence, θ. 	





Go into Fourier space	


Putting the quadratic terms on the rhs and going into 
Fourier space: 

∂δ(�k)
∂τ + θ(�k) = −

� d3q
(2π)3

�k·�q
q2 θ(�q)δ(�k − �q),

∂θ(�k)
∂τ +Hθ(�k) + 3

2ΩmH
2δ(�k) = −

� d3q
(2π)3

k2 �q·(�k−�q)

2q2|�k−�q|2

× θ(�q)θ(�k − �q).

v~(q/q2)θ	

Div	

 Product=	


Convolution	





Linear order	


•  To lowest order in δ and θ:	



•  with f(z)~Ωm
0.6=1 for Ωm=1 and D(a)~a. 

•  Decaying mode, δ~a-3/2, has to be zero for δ 
to be well-behaved as a->0. 

•  Define δ0=δL(k,z=0). 

δL(k, z) =
D(z)
D(zi)

δi(k)

θL(k, z) = −f(z)H(z)
D(z)
D(zi)

δi(k)



Standard perturbation theory	


•  Develop δ and θ as power series: 

•  then the δ(n) can be written 

•  with a similar expression for θ(n). 
•  The Fn and Gn are just ratios of dot products of the qs 

and obey simple recurrence relations. 

δ(k) =
∞�

n=1

anδ(n)(k)

θ(k) = −H

∞�

n=1

anθ(n)(k)

δ(n)(k) =
�

d3q1d3q2 · · · d3qn

(2π)3n
(2π)3δD

��
qi − k

�

× Fn ({qi}) δ0(q1) · · · δ0(qn)



Recurrence relations I	


•  Plugging the expansion into our 

equations and using 
–  (d/dτ)an=nHan 

–  (d/dτ)H=(-1/2)H2 for EdS 
•  we have (canceling H from both sides): 

nδ(n) + θ(n) = −
�

d3q1

(2π)3
d3q2

(2π)3
(2π)3δ(�k − �q1 − �q2)

�k · �q1

q2
1

n−1�

m=1

θm(�q1)δn−m(�q2)

3δ(n) + (2n + 1)θ(n) = −
�

d3q1

(2π)3
d3q2

(2π)3
(2π)3δ(�k − �q1 − �q2)

k2(�q1 · �q2)
q2
1q2

2

n−1�

m=1

θm(�q1)θn−m(�q2)



Recurrence relations II	


•  Which we can rewrite 

•  where An and Bn are the rhs mode-coupling integrals. 
•  This generates recursion relations for the Fn and Gn 

(because of the sums in An and Bn) 

δ(n) =
(2n + 1)An −Bn

(2n + 3)(n− 1)
, θ(n) =

−3An + nBn

(2n + 3)(n− 1)

Gn =
n−1�

m=1

Gm

(2n + 3)(n− 1)

�
3
�k · �k1

k2
1

Fn−m + n
k2(�k1 · �k2)

k2
1k

2
2

Gn−m

�

Fn =
n−1�

m=1

Gm

(2n + 3)(n− 1)

�
(2n + 1)

�k · �k1

k2
1

Fn−m +
k2(�k1 · �k2)

k2
1k

2
2

Gn−m

�



Example: 2nd order	



•  The coupling function: 

•  where we have symmetrized the 
function in terms of its arguments. 
– Note: this function peaks when k1~k2~k/2. 
– This will be important later. 

F2(k1,k2) =
5
7

+
2
7

(k1 · k2)
2

k2
1k

2
2

+
(k1 · k2)

2
�
k−2
1 + k−2

2

�



Formal development	


•  We can make the expressions above more 

formal by defining η=ln(a) and 

•  then writing 

•  with the obvious definitions of Ω and γ. 
•  We can also define P~<φφ>, B~<φφφ> so e.g. 

�
φ1

φ2

�
= e−η

�
δ

−θ/H

�

∂ηφa = −Ωabφb + eηγabcφbφc

∂ηPab = −ΩacPcb − ΩbcPac + eη

�
d3q [γacdBbcd + Bacdγbcd]



Power spectrum	



•  If the initial fluctuations are Gaussian 
only expectation values even in δ0 
survive: 
– P(k) ~ <[δ(1)+δ(2)+δ(3)+…][δ(1)+δ(2)+δ(3)+…]> 
–          = P(1,1) + 2P(1,3) + P(2,2) + … 

•  with terms like <δ(1)δ(2)> vanishing 
because they reduce to <δ0δ0δ0>. 



Perturbation theory: diagrams	



δn(k) =
k

qn

q1

δ0(qn)

...

δ0(q2)

δ0(q1)

Fn

q

×

q
′

=
q q

′

≡ (2π)3δD(q+q
′)P0(q),

× = 2
k -k

q

k − q

−q

q − k

= 2

∫
d3q

(2π)3
F2(q, k − q)F2(−q, q − k)P0(q)P0(|k − q|)

Just as there is a 
diagrammatic short-hand for 
perturbation theory in 
quantum field theory, so there 
is in cosmology:  



Example: 2nd order	


P (1,3)(k) =

1
252

k3

4π2
PL(k)

� ∞

0
dr PL(kr)

�
12
r2
− 158 + 100r2 − 42r4

+
3
r2

(r2 − 1)3(7r2 + 2) ln
����
1 + r

1− r

����

�
,

P (2,2)(k) =
1
98

k3

4π2

� ∞

0
dr PL(kr)

� 1

−1
dx PL

�
k
�

1 + r2 − 2rx
�

× (3r + 7x− 10rx2)2

(1 + r2 − 2rx)2
.

Perturbation theory enables the generation of truly impressive 
looking equations which arise from simple angle integrals.	


Like Feynman integrals, they are simple but look erudite!	





Example: 2nd order	


•  At low k, P(2,2) is positive and P(1,3) is negative 

–  Large cancellation. 
•  For large k total contribution is negative: 

–  P(2,2)~ (1/4) k2Σ2 PL(k) 
–  P(1,3)~ -(1/2) k2Σ2 PL(k) 

•  Here Σ is the rms displacement (in each 
component) in linear theory. 
–  It will come up again!! 

Σ2 =
1

3π2

� ∞

0
dq PL(q)



Example	


The lowest order correction 
to the matter power spectrum 
at z=0 (1-loop SPT).	



Note the improvement at low k where 
non-linear growth causes a suppression 
of power (pre-virialization).	





Beyond 2nd order	


•  Expressions for higher orders are easy to 

derive, especially using computer algebra 
packages. 

•  Using rotation symmetry the Nth order 
contribution requires mode coupling integrals 
of dimension 3N-1. 
–  Best done using Monte-Carlo integration. 
–  Prohibitive for very high orders. 
–  Not clear this expansion is converging! 



Comparison with exact results	



Carlson++09	



Broad-band shape of PL has 
been divided out to focus on 
more subtle features. 	



Linear	


1st order correction	


2nd order correction	





Including bias	


•  Perturbation theory clearly cannot describe the 

formation of collapsed, bound objects such as dark 
matter halos. 

•  We can extend the usual thinking about “linear bias” 
to a power-series in the Eulerian density field: 
‒  δobj = Σ bn(δn/n!) 

•  The expressions for P(k) now involve b1 to lowest 
order, b1 and b2 to next order, etc. 
–  The physical meaning of these terms is actually hard to 

figure out, and the validity of the defining expression is 
dubious, but this is the standard way to include bias in 
Eulerian perturbation theory. 



Other methods	


•  Renormalized perturbation theory 

–  A variant of “Dyson-Wyld” resummation. 
–  An expansion in “order of complexity”. 

•  Closure theory 
–  Write expressions for (d/dτ)P in terms of P, B, T, … 
–  Approximate B by leading-order expression in SPT. 

•  Time-RG theory (& RGPT) 
–  As above, but assume B=0 
–  Good for models with mν>0 where linear growth is scale-

dependent. 
•  Path integral formalism 

–  Perturbative evaluation of path integral gives SPT. 
–  Large N expansion, 2PI effective action, steepest descent. 

•  Lagrangian perturbation theory 

(see Carlson++09 for references)	





Some other theories	



1st SPT	


Large-N	


LPT	


Time-RG	


RGPT	





Other statistics	



PT makes predictions 
for other statistics as 
well.  For example, the 
power spectra of the 
velocity and the 
density-velocity cross 
spectrum.  Here it 
seems to do less well.	


SPT	


RPT	


Closure	


Time-RG	





Some other quantities	


1st SPT	


LPT	


RPT	


Closure	


Large-N	



Carlson++09	



The propagator, or	



which measures the 
decoherence of the 
final density field due 
to non-linear 
evolution.	



G(k) ∝ �δNLδ∗L�
�δLδ∗L�



Lagrangian perturbation theory	



•  A different approach to PT, which has been radically 
developed recently by Matsubara and is very useful 
for BAO. 
–  Buchert89, Moutarde++91, Bouchet++92, Catelan95, Hivon++95. 
–  Matsubara (2008a; PRD, 77, 063530) 
–  Matsubara (2008b; PRD, 78, 083519) 

•  Relates the current (Eulerian) position of a mass 
element, x, to its initial (Lagrangian) position, q, 
through a displacement vector field, Ψ. 



Lagrangian perturbation theory	


δ(x) =

�
d3q δD(x− q−Ψ)− 1

δ(k) =
�

d3q e−ik·q
�
e−ik·Ψ(q) − 1

�
.

d
2Ψ
dt2

+ 2H
dΨ
dt

= −∇xφ [q + Ψ(q)]

Ψ(n)(k) =
i

n!

� n�

i=1

�
d3ki

(2π)3

�
(2π)3δD

�
�

i

ki − k

�

× L(n)(k1, · · · ,kn,k)δ0(k1) · · · δ0(kn)



Kernels	



L(1)(p1) =
k
k2

(1)

L(2)(p1,p2) =
3
7

k
k2

�
1−

�
p1 · p2

p1p2

�2
�

(2)

L(3)(p1,p2,p3) = · · · (3)

k ≡ p1 + · · · + pn



Standard LPT	


•  If we expand the exponential and keep terms 

consistently in δ0 we regain a series δ=δ(1)+δ(2)+
… where δ(1) is linear theory and e.g. 

•  which regains “SPT”. 
–  The quantity in square brackets is F2. 

δ(2)(k) =
1
2

�
d3k1d3k2

(2π)3
δD(k1 + k2 − k)δ0(k1)δ0(k2)

×
�
k · L(2)(k1,k2,k) + k · L(1)(k1)k · L(1)(k2)

�

F2(k1,k2) =
5
7

+
2
7

(k1 · k2)
2

k2
1k

2
2

+
(k1 · k2)

2
�
k−2
1 + k−2

2

�



LPT power spectrum	


•  Alternatively we can use the expression for δk 

to write 

•  where ΔΨ=Ψ(q)-Ψ(0). 
•  Expanding the exponential and plugging in for 
Ψ(n) gives the usual results. 

•  BUT Matsubara suggested a different and 
very clever approach. 

P (k) =
�

d3q e−i�k·�q
��

e−i�k·∆�Ψ
�
− 1

�



Cumulants	


•  The cumulant expansion theorem allows us to write 

the expectation value of the exponential in terms of 
the exponential of expectation values. 

•  Expand the terms (kΔΨ)N using the binomial theorem. 
•  There are two types of terms: 

–  Those depending on Ψ at same point. 
•  This is independent of position and can be factored out 

of the integral. 

–  Those depending on Ψ at different points. 
•  These can be expanded as in the usual treatment. 



Example	


•  Imagine Ψ is Gaussian with mean zero. 
•  For such a Gaussian: <eΨ>=exp[σ2/2]. 

P (k) =
�

d3qe−ik·q
��

e−iki∆Ψi(q)
�
− 1

�

�
e−ik·∆Ψ(q)

�
= exp

�
−1

2
kikj �∆Ψi(q)∆Ψj(q)�

�

kikj �∆Ψi(q)∆Ψj(q)� = 2k2
i �Ψ2

i (0)� − 2kikjξij(q)

Keep exponentiated.	

 Expand	





Resummed LPT	


•  The first corrections to the power spectrum are then:  

•  where P(2,2) is as in SPT but part of P(1,3) has been 
“resummed” into the exponential prefactor. 

•  The exponential prefactor is identical to that obtained 
from 
–  The peak-background split (Eisenstein++07) 
–  Renormalized Perturbation Theory (Crocce++08). 

P (k) = e−(kΣ)2/2
�
PL(k) + P (2,2)(k) + �P (1,3)(k)

�
,



Beyond real-space mass	


•  One of the more impressive features of Matsubara’s approach is 

that it can gracefully handle both biased tracers and redshift 
space distortions. 

•  In redshift space, in the plane-parallel limit,  

•  In PT   

•  Again we’re going to leave the zero-lag piece exponentiated so 
that the prefactor contains 

•  while the ξ(r) piece, when FTed, becomes the usual Kaiser 
expression plus higher order terms.  

kikjRiaRjbδab = (ka + fkµ�za) (ka + fkµ�za) = k2
�
1 + f(f + 2)µ2

�

Ψ(n) ∝ Dn ⇒ R(n)
ij = δij + nf �zi�zj

Ψ→ Ψ +
�z · Ψ̇
H

�z = RΨ



Beyond real-space mass	


•  One of the more impressive features of Matsubara’s approach is 

that it can gracefully handle both biased tracers and redshift 
space distortions. 

•  For bias local in Lagrangian space: 

•  we obtain 

•  which can be massaged with the same tricks as we used for the 
mass. 

•  If we assume halos/galaxies form at peaks of the initial density 
field (“peaks bias”) then explicit expressions for the integrals of 
F exist. 

δobj(x) =
�

d3q F [δL(q)] δD(x− q−Ψ)

P (k) =
�

d3q e−ik·q
��

dλ1

2π

dλ2

2π
F (λ1)F (λ2)

�
ei[λ1δL(q1)+λ2δL(q2)]+ik·∆Ψ

�
− 1

�



The answer	


P (s)

obj = e−[1+f(f+2)µ2]k2Σ2/2

�
�
b + fµ2

�2
PL +

�

n,m

µ2nfmEnm

�

Zel’dovich	


damping	



Mode coupling terms 
up to E44. These terms 
involve b1 and b2.	



Note angle 
dependence of 
damping.	




