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* Lecture 1: Introduction Bayes vs
Frequentists, priors, the importance of
being Gaussian, modeling and statistical
inference, some useful tools.

 Lecture 2: Monte Carlo methods.
Different type of errors. Going beyond
parameter fitting.

» Lecture 3: forecasting: Fisher matrix
approach. Introduction to model selection.

Handy explanations. Conclusions.



Statistical vs systematic ¥
errors

Statistics can tell you how to deal with statistical errors

As a data set grows, the statistical errors shrink;
systematic errors do not shrink

You've got a problem.

Rumsfeld can help:
There are known knowns. These are things we know that we know.

There are known unknowns. That is to say, there are things that we
know we don't know. But there are also unknown unknowns.

There are things we don't know we don't know.

Donald Rumsfeld

Jokes aside: some interesting literature has appeared in the past 2 yr...




How do you know you are not fitting the noise?

Example of powerful technique

Cross Validation is a powerful technique to make sure one is not fitting the noise

A Regression Problem

y = f(X) + noise

. Can we learn f from this data?

X —» Let’'s consider three methods...
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linear

_\‘\

Which is best?

y

quadratic

Join the dots

X

Why not choose the method with the

X

best fit to the data?
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What do we really want?

Y| - I

X

X

Why not choose the method with the
best fit to the data?
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“‘How well aré you going to predict
future data drawn from the same
distribution?”




The training/test set approach is similar to leave one out CV.

Train on subset of the data
Could be all-1

Z Randomly choose
. X % ofthe datato beina
test set

2. The remainderis a
training set

3. Perform your
regression on the training
X — set

(Linear regression example) 4. Estimate your future
performance with the test

set
CV score

(this may remind you of training sets for photo-z)



Leave one out cross validation:

Fork=1to R
1. Let (x,,y,) be the k™ record

2. Temporarily remove (x,,y,)
from the dataset

3. Train on the remaining R-1

datapoints (example shown for
linear model)

. . 4. Note your error (x,,y,)

When you've done all points,
report the mean error(CV score)
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In this example:

MSE  oocv MSE  oocv MSE, 5oy CV score
=2.12 =0.962 =3.33

Leave one out CV is the ideal: does not waste much data
but it is very expensive; loong discussion about which CV is best...
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Beyond parameter fitting

Going minimally parametric
Working example: the shape of the primordial P(k)
Parameter fitting e.g., : P(k)= A (k/k0)"1
Other popular options are:

Instead of fitting a function to the data, use a basis function
(wavelets, principal components etc...)

Use bins }
S
Nfzoil; **fii*i I
Piecewise linear

Spergel et al 07



Beyond parameter fitting: model testing
Akaike Information criterion (Akaike 1974; Liddle 04)

AIC = —2In Lax + 2k, k=Number of parameters

Bayesian Information criterion ~ (Schwarz 78, Liddle 04)

BIC=-2InLuax + kIn N N=Number of data points

Bayesian Evidence

it does not focus on the best-fitting parameters of the

L= fﬁiﬂ}Pf(ﬂ)dE- model, but rather asks “of all the parameter values
you thought were viable before the data came along,
how well on average did they fit the data?”

Computationally expensive! (there are packages to help out there e.g. cosmonest)



P(D | H)P(H) Bayes
P(D)

P(H | D) =

P D, H) = L E;’l ggﬂlﬂ ) Bayes, for parameter fitting

£ P(D|H]|=fd“ or(p|6.mpe| ) Bayes for the MODEL itself



Introduction to Fisher

Cosmological examples of

hypothesis testing:
Are CMB data consistent with the hypothesis of Gaussian initial fluctuations?
Are CMB+LSS data consistent with the hypothesis of a spatially flat Universe?

Parameter estimation:
What is the value of the matter density parameter (in the LCDM model)?
And what it the value of the Hubble parameter today?

Model selection:
Is there evidence for a non-flat Universe?
|s there evidence for a non-constant dark energy?




Back to likelihoods

e.g., T value in pixels of CMB map,

X data vector (random variable) £ ier coefficients of density of survey

efc.
O = (61,82, ...,0). Vector of model parameters
L(z: @), Probability distribution of x

Since x is a random variable also © will be so ... ideally:

(@) =6y, UNBIASED
Ag; = ((67) - (.9{-}’-3]“3 Minimize this i.e. errors

l.e. we want the best unbiased estimator



Fisher information matrix

.
.F_._'-.'E :dxj: L= —-InL

The maximum likelihood estimator is ©,, that maximizes L(x;0)

Fisher 1935

a number of powerful theorems apply (e.g., Kendall & Stuart 1969):
For any unbiased estimator:

Af; > (F 1}3;’2 or Ab; > 1/ F. Cramer-Rao inequality
If there is the best unbiased estimator it is the ML or function of thereof

The ML estimator is asymptotically the best unbiased estimator



Fisher matrix approach

(Fisher 1935)  How well can a future experiment do?
(quick and easy but not always accurate)

2
Fisher information matrix F,; = <33; > L=—-—InC
C¥; EEj

1/2(data — theory(@))C~*(data — theory(d)) ~

e.g.
1/2( fiducial — theory(d@))C~*(fiducial — theory(a))

To develop intuition, one parameter case, Gaussian likelihood.

A

L=1/2(a—a)/o? L
. 2
Second deriv. w.r.t. @ — 1/0’a




In general

Expand in Taylor series around

1dL &L
2 da?

First deriv O by construction

AL =

a— ap)?

2
Should remind you of X

All it is: Quadratic expansion around the max

l/\/{l’zb/dﬂig is the 1 sigma displacement of & from ay

Like a measure for the width of the peak.....



Multi dimensional case...

2 -1 "
Oana; = (F77)i Parameters covariance
1 .
On; > T If all other parameters are fixed
i1
C1.1/2 Marginalized errors
ga = (F )i I

\ Matrix inversion performed



Conditional and marginal errors

Minumum error on q; if all other parameters are known

o > = ALMOST NEVER USED

The marginal distribution of o, :integrate over other parameters

pler) = [ das.dap(a)

Oy = (F_l)y‘E

1



What are we really saying?

1
{:pltl'{ ﬂ, ﬂpirjljil — Ln EXp l—g I,iﬂ — ﬂfjj”F”.’-j{ﬂ — ﬂ[]] :-;]

1 1
—(z—p)C Yz - p)
X detCeXp[ 2{ p)C (x— ) ]

This is sometimes called: Laplace approximation



Explicit calculation

L E Dropped irrelevant constant
2L =Indet C + (z —p)C " (z — p) Assumed Gaussianity

C={z—p)lc—p DATA covariance (can depend on the parameters)

You can show that:

This simplifies

Fag = (Lrap) = %Tr[c—lc__uc—lc_,g +C M), in specific cases
5,
where  Mas = (Dyag) = Mo Byj tHss sy and  Cpo= 96,

REQUIRES NO DATA!



Other option:
Compute explicitly:

6% 1n L
00,005

Taking the data to be = a fiducial model

Numerical second derivative: beware!

ALWAYS TEST STABILITY OF DERIVATIVES!!



You can compute the Fisher matrix
BEFORE you do the experiment.

You can then use it as a tool
to design or optimize experiments



Within the assumptions made, now you know everything!

Say you have worked with 5 parameters but now you want
to keep parameters 1 and 3 fixed at fiducial model....

Take the submatrix (1,3) of Fijj

Say you have a 5 parameters Fisher and you want to plot the
joint 2D forecasted constraint for parameters 2 and 4
marginalized over the other parameters

Invert Fij, take the submatrix (2,4) invert this back. Call this Q.
Q describes a Gaussian 2D likelihood i.e.

- - g
X2 =) (o — af')Qjq(cg — %)
kq
A = da)dal  Andlook up Ain the “famous” table
You can also draw the ellipses!



What if you want to
reparameterize?

Typical example
CMB: parameters

Now you want to combine with BAQO constraints

BAO parameters H(z), Da(z)

90,
Fo o, = .
él Tl £¢J

R




This is what you do....

F=F BAD survey (+F CMB +F other suweys)

Marginalize -

parameters

Invert .

> F1=Q 'take a submatrlixf_.j:: Q=F'

over nuisance )
F ' & Invert back

-
<

"
- =

Project on new space | | _
Fisher matrix for new

L% gs Fg, 6 3% :: F parameters

min {‘j ¢|l & ¢.II

Invert
_ L

-1 : .
F Covariance matrix
(i.e. errors on parameters)




Practical tools: icosmo  i&sm

http://www.icosmo.org/Initiative_Web/Initiative.html

Notes from a tutorial course on icosmo link from:
http://icc.ub.edu/~liciaverde/ERCtraining.html
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Fig. 1. The expected error ellipses for cosmological parameters (os, baryon density parameter (2;.
and dark energy equation of state w /pc?) from a 3D weak lensing survey of 1000 square degrees,
with a median redshift of 1 and a photometric redshift error of 0.15. Probabilities are marginalised
over all other parameters, except that n = 1 and a flat Universe are assumed. Dark ellipses represent
a prior from WMAP, pale represents the 3D lensing survey alone, and the central ellipses show the
combination (from Kitching T'., priv. comm.).



aside Popular CMB Fisher matrix
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Approximations?

Covariance?

Applicability: Fisher vs non Fisher



Fisher and systematic errors

Can the Fisher approach account for systematic errors?

In general NO

But there's an exception



Imagine you have two competing models M and M’: M with n parameters
and M’ with n’, where n’<n. Say also that the two models are NESTED,

i.e. M’ is a particular case of M

If the true underlying model is M and you instead fit the data with M’,
the maximum expected likelihood will not be at the correct values of the
parameters: if n-n’=p, the n’ parametrs shift from their value to compensate

for the fact that p parameters are kept fixed at “wrong” values.
If the p parameters differ by 4, fro their true values, the other
parameters are shifted by:

80, = —(F'" )aaGacdye  a,f=1..0n,(=1...p

l i =
Gac = 5 Tr [CT1CAC " Co+ € (anly + mpn)]



This is what's going on:

-«——>
oy

This is very useful: e.g., isocurvatures, delayed recombination,
neutrinos...



And there’s more

Remember the evidence?

p(x|M) = [ d6p(xloM)p(6lM)

Back to models M and M’:

p(M'|x) p(M"){f dﬂ’p(xﬂ’M*)pmM*)J

p(M|x) — p(M)| [dOp(x|0M)p(6|M)

For non-commital priors Bayes factor B

p(M'") = p(M)



What’s the Bayes factor?

13— J 40’ p(x|6'M")p(6'| M)
] dOp(x|0M)p(6|M)

M will have higher likelihood (or as high) but the evidence will
favour the simpler model if the fit is nearly as good, through

the smaller prior volume.

. . J‘ der p(}{lg;, M!) ﬂ.e]_ e ﬂen
F f bl ; B = " .
or unirorm separable pPriors j dﬂp(x|9, M) ﬂgi N ﬂﬂ;lf

If prior is wide enough to AG . AB

encompass the"support” of L AGpyy ... AO,
Lo AB, ... A0,

the likelihood "

Requires a painful multi-dimensional integration, but....



Laplace approximation and Fisher to the rescue!

detF Lo pg vy ... A0,

— (271)"P/2
\B) = (2n) vdet F' Lo

Where you already know how to compute L'o and Lo

And you’ll see that this simplifies to:

/ p
<B} — (Zﬂ)_p/z \% EXP (——59 Fﬂjé.gﬁ) H ﬂ.en '+qg-

g=1

60, = 60, for a < n' 000 = 0Ya—n' o >n'



Example:

Is gravity described by General relativity?

dIné/dIn £2,, = v, where v = 0.55 for GR

e.g., DGP:
N S B R B S B N B B A B B B
100 £ , = 0.68
n 5 7
m 10 & 2 _
= - decisive -
B = sirong -
I substantial 7
1 _
E inconclusive E
T T T T T T T T
0 0.05 0.1 015

Heavens et al. 07 Oy Euclid+Planck



..... Back to likelihoods

CMB AT distribution is close to gaussian,
So the CI's are NOT (and at low | CLT does not hold)

expl—(TS~T)/2)
det(S)

L(T|CM)

Signal covariance Given by a Legendrg
theoretical model polynomials



Now in spherical harmonics

exp|—1/2|asm[2/CH]
/i

Isotropy means that we can sum over m's
Cth C‘dum
—2InL = (20+1) [111( )+( : )—1]
Z Cf.:i ata Ggh

Cdate — 3> g, 12/(20 + 1),

L(T|CE")

Exercise: With noise Cih — Ct" + N,
show that _
Partial sky InL —= fu,InL




CMB light is polarized!

You can easily generalize the above to

BB CTTCEE — (CTE)?
—2InL = Z(ZE%—I){]H(Q )+ln( Lt G ))

f CPP CITCFE — (CFF)?
CFTCEE + CFTCFE — o(TECTE | CPP }
CTTCF" — (C7™) ™

C, denotes Ct* and C, denotes Cdt.



Exact TE,EE,BB Likelihood

D. EXACT LIKELIHOOD EVALUATION AT LOW MULTIPOLES

At low multipoles, /7 < 23, we evaluate the likelihood of the data for a given theoretical model exactly from the temperature
and polarization maps. The standard likelihood is given by

exp [—%;ﬁ"(.S‘H\")‘lm] dm

L(ni|S)dni = SN[ EISENE

(DD)

where 7i is the data vector containing the temperature map. 7. as well as the polarization maps. Q. and U. n,, is the number of
pixels of each map. and S and NV are the signal and noise covariance matrix (37, x 3n,). respectively. As the temperature data
are completely dominated by the signal at such low multipoles. noise in temperature may be ignored. This simplifies the form of
likelihood as

exp |4 o+ No)it| gy exp(<3T'SPT)  gr

Sp+Np[i2 @y [S[IF Qayel

L(ni|S)dmi = (D2)

where Sz is the temperature signal matrix (n, x n,). the new polarization data vector. = (( p, U p) 1s given by

0,=0,- ZSUZTW’ i+ -2 Y ), (D3)

m=

- STL

ZSUZT,,,u mp—-2Ym ). (D4)

m==]

and Sp 1s the signal matrix for the new polarization vector with the size of 2n, x 2n,. As T}, is totally signal dominated. the noise

matrix for (Q, U) equals that for (Q 0. n ». To estimate 77,,. we used the full-sky internal linear combination (ILC) temperature
map (Hinshaw et al. 2006).

One can show that equation (D1) and (D2) are mathematically equivalent when the temperature noise is ignored. The new
form, equation (D2). allows us to factorize the likelihood of temperature and polarization, with the information in their cross-
correlation, S7Z. fully retained. We further rewrite the polarization part of the likelihood as




Approximations

—2InL=) (20+1)
£

th ,
mc%fﬂg+- G
Ce

1 .y -~
In -EGH,USH X _5 Z(Cth - CE)QEE" (CE’h o Cf;)

o
th — In(Cih %, = In(C,
2l Loy = 3 (et — 2) Quo (288 — 30) { z ﬂ(hf + Ne), zeﬁ n(Cy + Ny)
e Qur = (Co + Ne)Qee (Cor + Nir).
Expand around the max ;Ce =Cj" (1 +e).

EE EE'

—2InL;=(204+1)[e—In(1+¢€)] ~ (264 1) (E -3 - @(Efl))

2

1
Oh, |OOk! ].ﬂ ﬁ — E 111 ﬁGausu _I_ g ]-ﬂ ‘!CLN Qgﬁf — (Céh + JIV;E)QEE! (szh +NEI).



For Fisher

CHB ﬂ"'Cx %-pxr : jé‘{."f
=220 76,

' X,Y=TT, TE, EE, BB etc.,

(CITy?  (CJE) cyrCrE 0

B 2 {CE"E}E {CE?:EE}E CEECT‘E 0

= 2001 | CITCTE CEECTE 1)2](CTE ) +{3TTCEE] 0
0 0 0 (CFB)?

Proof by intimidation: “just do it”



“If tortured sufficiently,
data will confess to almost
anything”

Fred Menger



Treat your data with respect
(Licia Verde)



Thank you!

SOG, LOC

references

http://arxiv.org/pdf/0712.3028
http://arxiv.org/pdf/0911.3105

http://arxiv.org/pdf/0906.0664

http://arxiv.org/pdf/astro-ph/9603021 (only sec 1 & 2)
http://arxiv.org/pdf/astro-ph/0703191



Real world i1ssues

Discrete Fourier transform (routines available)

Box size L

even if §(r) in the box is continuous, d;, will be discrete.

27

k = (ZW) (2,7, k) where A, = 7

L
But you also pixelize  9(Z)

Cloud in cloud, Nearest grid point, triangular shaped cloud...

Remember to deconvolve at the end!!!!



