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outline
• Lecture 1: Introduction Bayes vs

Frequentists, priors, the importance of
being Gaussian, modeling and statistical
inference, some useful tools.

• Lecture 2: Monte Carlo methods.
Different type of errors.  Going beyond
parameter fitting.

• Lecture 3: forecasting: Fisher matrix
approach. Introduction to model selection.

   Handy explanations.  Conclusions.



Statistical vs systematic
errors

Statistics can tell you how to deal with statistical errors

As a data set grows, the statistical errors shrink; 
systematic errors do not shrink

You’ve got a problem.

Rumsfeld can help:
There are known knowns. These are things we know that we know.
There are known unknowns. That is to say, there are things that we
know we don't know. But there are also unknown unknowns.
There are things we don't know we don't know.
Donald Rumsfeld

Jokes aside: some interesting literature has appeared in the past 2 yr… 



How do you know you are not fitting the noise?

Example of powerful technique

Cross Validation is a powerful technique to make sure one is not fitting the noise 
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linear
quadratic Join the dots
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The training/test set approach is similar to leave one out CV.

Train on subset of the data

(this may remind you of training sets for photo-z)

x

Could be all-1

CV score



Leave one out cross validation:

(example shown for
 linear model)

(CV score)
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In this example:

Leave one out CV is the ideal: does not waste much data
but it is very expensive; loong discussion about which CV is best…

CV score
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Beyond parameter fitting
Going minimally parametric 

Instead of fitting a function to the data, use a basis function
(wavelets, principal components etc…)

Other popular options are:

Use bins

Piecewise linear

Working example: the shape of the primordial P(k)

Parameter fitting e.g., : P(k)= A (k/k0)n-1

Spergel et al 07



Beyond parameter fitting: model testing

Akaike Information criterion (Akaike 1974; Liddle 04)

k=Number of parameters

Bayesian Information criterion

N=Number of data points

(Schwarz 78, Liddle 04)

Bayesian Evidence

it does not focus on the best-fitting parameters of the
model, but rather asks “of all the parameter values 
you thought were viable before the data came along, 
how well on average did they fit the data?”

Computationally expensive! (there are packages to help out there e.g. cosmonest)



Bayes

Bayes, for parameter fitting

Bayes for the MODEL itself



Introduction to Fisher

Cosmological examples of
 hypothesis testing: 
Are CMB data consistent with the hypothesis of Gaussian initial fluctuations?
Are CMB+LSS data consistent with the hypothesis of a spatially flat Universe?

Parameter estimation:
What is the value of the matter density parameter (in the LCDM model)?
And what it the value of the Hubble parameter today?

Model selection:
Is there evidence for a non-flat Universe?
Is there evidence for a non-constant dark energy?



Back to likelihoods
X  data vector (random variable)

e.g., T value in pixels of CMB map,
Fourier coefficients of density of survey
etc.

Vector of model parameters

Probability distribution of x

Since x is a random variable also Θ will be  so … ideally:

UNBIASED

Minimize  this i.e. errors

i.e. we want the best unbiased estimator



Fisher information matrix

Fisher 1935

The maximum likelihood estimator is ΘML that maximizes L(x;Θ)

a number of powerful theorems apply (e.g., Kendall & Stuart 1969):

For any unbiased estimator: 

Cramer-Rao inequality

If there is the best unbiased estimator it is the ML or function of thereof

The ML estimator is asymptotically the best unbiased estimator

or



Fisher matrix approach
(Fisher 1935) How well can a future experiment do? 

(quick and easy but not always accurate)

Fisher information matrix

To develop intuition, one parameter case, Gaussian likelihood.

Second deriv. w.r.t.

e.g.

L



In general

Expand in Taylor series around  

First deriv 0 by construction

Should remind you of 

All it is: Quadratic expansion around the max

Like a measure for the width of the peak…..



Multi dimensional case…

Parameters covariance

If all other parameters are fixed

Marginalized errors

Matrix inversion performed



Conditional and marginal errors

Minumum error on αi if all other parameters are known 

ALMOST NEVER USED

The marginal distribution of αi :integrate over other parameters

>



What are we really saying?

This is sometimes called: Laplace approximation



Explicit calculation
Dropped irrelevant constant
Assumed Gaussianity

DATA covariance (can depend on the parameters)

You can show that:

where and

REQUIRES NO DATA!

This simplifies
in specific cases 



Other option:

Compute explicitly:

Taking the data to be = a fiducial model

Numerical second derivative: beware!

ALWAYS TEST STABILITY OF DERIVATIVES!!!!



You can compute the Fisher matrix 
BEFORE you do the experiment.

You can then use it as a tool 
to design or optimize experiments



Within the assumptions made, now you know everything!

Say you have a 5 parameters Fisher and you want to plot the
 joint 2D forecasted constraint for parameters 2 and 4 
marginalized over the other parameters

Say you have worked with 5 parameters but now you want 
to keep parameters 1 and 3 fixed at fiducial model….

Take the submatrix (1,3) of Fij

Invert Fij, take the submatrix (2,4) invert this back. Call this Q.
Q describes a Gaussian 2D likelihood i.e.

And look up Δ in the “famous” table

You can also draw the ellipses!



What if you want to
reparameterize?

Typical example 
CMB: parameters  

Now you want to combine with  BAO constraints

BAO parameters  H(z), Da(z)



This is what you do….



Practical tools: icosmo
http://www.icosmo.org/Initiative_Web/Initiative.html

Notes from a tutorial course on icosmo link from: 
http://icc.ub.edu/~liciaverde/ERCtraining.html



aside
Popular CMB Fisher matrix

Approximations?

Applicability: Fisher vs non Fisher

Covariance?



Fisher and systematic errors

Can the Fisher approach account for  systematic errors?

In general NO

But there’s an exception



Imagine you have two competing models M and M’:  M  with n parameters 
and  M’ with n’, where n’<n. Say also that the two models are NESTED, 
i.e. M’ is a particular case  of M

If the true underlying model is M and you instead fit the data with M’,
 the maximum  expected likelihood will not be at the correct values of the
parameters: if n-n’=p, the n’ parametrs shift from their value to compensate 
for the fact  that p parameters are kept fixed at “wrong” values.
If the p parameters  differ by           fro their true values, the other
 parameters are  shifted by:



This is what’s going on:

This is very useful: e.g.,  isocurvatures,  delayed recombination,
 neutrinos…  



And there’s more
Remember the evidence?

Back to models M and M’:

Bayes factor BFor non-commital priors



What’s the Bayes factor?

M will have higher likelihood (or as high) but the evidence will
favour the simpler model if the fit is nearly as good, through
the smaller prior volume.

For uniform separable priors:

If prior is wide enough to 
encompass the”support” of 
the  likelihood

Requires a painful multi-dimensional integration, but….



Laplace approximation and Fisher to the rescue!

Where you already know how to compute L’o and Lo

And you’ll see that this simplifies to:



Example:
Is gravity described by General relativity?

e.g., DGP:

Euclid+Planck
Heavens et al. 07



…..Back to likelihoods

CMB ΔT distribution is close to gaussian,

So the Cl’s are NOT (and at low l CLT does not hold)

Signal covariance Given by a 
theoretical model

Legendre 
polynomials



Now in spherical harmonics

Exercise:
 show that 

With noise

Partial sky ~



CMB light is polarized!

You can easily generalize the above to



Exact TE,EE,BB Likelihood



Approximations

Expand around the max

{

Oh, look!



For Fisher

Proof by intimidation: “just do it”



“If tortured sufficiently,
data will confess to almost

anything”

Fred Menger



Treat  your data with respect
(Licia Verde)



Thank you!
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Real world issues
Discrete Fourier transform

Box size L

But you also pixelize 

Cloud in cloud, Nearest grid point, triangular shaped cloud…

Remember to deconvolve at the end!!!!

(routines available)


