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outline
• Lecture 1: Introduction Bayes vs

Frequentists, priors, the importance of
being Gaussian, modeling and statistical
inference, some useful tools.

• Lecture 2: Monte Carlo methods.
Different type of errors.  Going beyond
parameter fitting.

• Lecture 3: forecasting: Fisher matrix
approach. Introduction to model selection.

    Conclusions.
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Example: for multi-variate Gaussian
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Errors

From: “Numerical recipes”  Ch. 15

If likelihood is Gaussian and Covariance is constant



example Cash 1979

Observation of N clusters is Poisson 

……. expected …….

Experimental bin (mass, SZ decrement, X-ray lum, z…)

Define

Between 2 different models is chisquared-distributed!

Unbinned or small bins
 occupancy 1 or 0 only



Marginalization

example



Other data sets

If independent, multiply the two likelihoods

(can use some of them as “priors”)

Beware of inconsistent experiments!



Spergel 2007



Monte Carlo methods



Monte Carlo methods

a) Monte Carlo error estimation 

b) Monte Carlo Markov Chains



Your brain does it!

Spot the differences…



Intro to:
 Monte Carlo

Simple problem: what’s the mean of a large number of objects?

What’s the mean height of people in PV?

If N is very large this is untractable soo…

If n<<N but still a fair sample, great!

In probability:

In Bayesian inference:



You can show that:

The estimator is unbiased
 and you can quantify the variance of the estimator:
The error shrinks like S1/2



Very simple example:

1

10

4 times the red area

There are better ways to  compute π, so use mcmc only when right to use…



Historical note



history



Monte Carlo methods
a) Monte Carlo error estimation

  Back to parameter estimation and confidence regions

Conceptual interpretation in cosmology

α true Set of parameters known only to Mother Nature

Statistically realized 

Observable universeα

Measurement (with its errors)

Do Measured data You (the experimenter)
Can see

want

NOT a unique realization of α true

αo
analysis



There could be infinitely many realizations 
(hypothetical data sets)

Each one with best fit parameters

Expect:

If I knew the distribution of That’d be all I need

Trick: say that (hope) 

In many cases we can simulate the distribution of 

Make many synthetic realizations of universes where
is the truth; mimic the observational process in all these
mock universes, estimate the best fit parameters from each;
map  Very important tool



How to sample from the
probability distribution?

• For some  well known univariate probability
distributions there are numerical routines
http://cg.scs.carleton.ca/~luc/rnbookindex.html

• In other cases there may be numerical techniques to
sample P(x) [more later]

• Importance sampling: (if you know how to sample
from Q but not from P)

Some Q are more suitable for P than others….



Monte Carlo Markov Chains
So you have a higher-dimensional probability distribution, 
you want to sample in a way proportional to it , 
with a random walk

Start at an 
arbitrary point

Burn-in
Goal: density of points
proportional to 
the probability

MCMC gives approximated, correlated samples from the target distribution

Take Markov steps



b) Monte Carlo Markov Chains

http://cosmologist.info/cosmomc/

Using software as black box is ALWAYS a BAD idea



Grid-based approach

What if you have (say) 6  parameters? 

You’ve got a problem !

Operationally:
m

!

8
!

e.g., 2 params: 10 x 10

b) Monte Carlo Markov Chains

Explore likelihood surface

6 params, 20 pixels/dim
=                     evals

say 1.6 s/eval

~1200 days!



Markov Chain Monte Carlo  (MCMC)

Simulate the posterior distribution

Standard in CMB analyses (publicly available COSMOMC)

Bayes

Set of cosm. params

Generate random draws from the posterior that are 
a fair sample of the likelihood surface



Markov Chain Monte Carlo  (MCMC)

Random walk in parameter space

At each step, sample one point in parameter space 

The density of sampled points! posterior distribution

marginalization is easy: 
just project points and recompute their density

FAST:  before 
7

10 likelihood evaluations, now< 
5

10

Adding external data sets is often very easy



Operationally (Metropolis-Hastings):

1. Start at a random location in parameter space:
old
i

α L old

2. Try to take a random step in parameter space: new
i

α L new

3a. If L
new
! Lold Accept (take and save) the step, 

“new”--> “old”   and go to 2.

3b. If 
new< L

old
L Draw a random number x  uniform in 0,1

If x ! L new

L old

do not take the step (i.e. save  “old”)
and go to 2.  

< L new

L old
If x do as in 3a.

KEEP GOING….



“Take a random step”

The probability distribution of the step is the 
“proposal distribution”, which you should not change once
 the chain has started.

The proposal distribution (the step-size)  is crucial 
 to the  MCMC efficiency.

Steps too small step poor mixing

Steps too big step poor acceptance rate

“fair sample of the likelihood surface”, remember?



The importance of stepsize

Step number

Likelihood Poor exploration

Poor exploration



The importance of stepsize



Take a random step

For statisticians: transition operators

Detailed balance: (beware of boundaries….)



When the MCMC has forgotten about the starting location
and has well explored the parameter space
you’re ready to do parameter estimation.

Burn-in
USE a MIXING and CONVERGENCE criterion!!!



Recommended: start 4 to 8 chains at well separated points
M chains, N elements

Vector with parameters valueChain mean

Mean of distrib.

Variance between chains

And within

Always >1 by construction

Require <1.03

Gelmans and Rubin convergence 



Unconverged chains are just nonsense



Metropolis-Hastings is NOT the only implementation,

Other options are: 
Gibbs Sampler
Rejection method
Hamiltonian Monte-Carlo
Simulated annealing (though you do not get an MCMC)



Beware of DEGENERACIES

Reparameterization.

h

c
! 2

h
c

!

e.g., Kososwsky et al. 2002



Even “better”:

Cosmomc has the option of computing the covariance 
for the parameters
Find the axis of the multi dim. degeneracies
perform a rotation and re-scaling to obtain 
azimutally symmetric contours

An improve MCMC efficiency by factor of up to 10

It is still a linear operation



Where’s the prior ?



Once you have the MCMC output:

The density of points in parameter space gives you the posterior distribution

To obtain the marginalized distribution, just project the points

To obtain confidence intervals, - integrate the “likelihood” surface

-compute where e.g. 68.3% of points lie

To add to the analysis another dataset (that does not require extra 
parameters) renormalize the weight by the “likelihood” of the new data set. 

To each point in parameter space sampled by the MCMC give a weight
proportional to the number of times it was saved in the chain  

No need to re-run!

warning: if new data set is not consistent with the old one--> nonsense 



Hamann et al. arXiv:0705.0440

Errors, what errors?





Prior-independence?
Once you and an MCMC output what you can do is to look 
at the  likelihood  value not the weight.

Say you have n uninteresting
parameters and one that you are
interested in e.g. mν. For each value
of mν  find the maximum likelihood
Lm  regardless  of the  values
assumed by the other parameters.
Then consider Lm/Lmax  as a function
of mν.

Reid et al ‘10



http://lambda.gsfc.nasa.govYou can do it yourself!

In particular:
http://lambda.gsfc.nasa.gov/product/map/dr4/parameters.cfm



Beyond parameter fitting: model testing

Akaike Information criterion (Akaike 1974; Liddle 04)

k=Number of parameters

Bayesian Information criterion

N=Number of data points

(Schwarz 78, Liddle 04)

Bayesian Evidence

it does not focus on the best-fitting parameters of the
model, but rather asks “of all the parameter values 
you thought were viable before the data came along, 
how well on average did they fit the data?”

Computationally expensive! (there are packages to help out there e.g. cosmonest)



Bayes

Bayes, for parameter fitting

Bayes for the MODEL itself



Suggested exercises
• Go and download the H(z) data  from table 2 of the link from

http://icc.ub.edu/~liciaverde/clocks.html  make a plot in the Ωm -ΩΛplane
marginalizing over Ho. You can do that using a grid or using a MCMC
approach.

• Add a prior given by the measurement of Ho of Riess et al.
http://arxiv.org/pdf/0905.0695

•  Download one of the WMAP chains, plot confidence limits for a few
parameters and for an example of  couple of  parameters.

• Importance-sample it to add information from e.g. the Ho measurement or the
H(z) measurements.

• Or try to compute profile likelihood for one of the parameters and compare the
results  with the standard MCMC error.

If you are familiar with numerical integrals you can try he SNeIA sample

e.g., http://supernova.lbl.gov/Union/

If you are a wizard with computers you can try to install cosmomc  and run chains.



Key concepts today

Recap: Likelihoods and chisquared

Confidence  levels; confidence regions

Monte Carlo methods

Monte-Carlo errors

MCMC

What confidence intervals

Beyond parameter fitting (intro)

For discussion:  statistical errors vs. systematic errors

Interesting literature start appearing… 



Beyond parameter fitting
Going minimally parametric 

Instead of fitting a function to the data, use a basis function
(wavelets, principal components etc…)

Other popular options are:

Use bins

Piecewise linear

Working example: the shape of the primordial P(k)

Parameter fitting e.g., : P(k)= A (k/k0)n-1

Spergel et al 07



How do you know you are not “fitting the noise”?

How do you know the model (e.g. power law, running) is OK?

Minimally parametric technique
Based on smoothing splines

Splines: Piecewise polynomial (usually cubic) fit.  Describe  P(k) with  splines  

Smoothing: Suitable for looking for smooth deviations from power laws

Knots: Discrete values of k,ki. P(ki) will be “free” parameters.  
Do spline  for the knots 

Sealfon et al (2005); Verde, Peris (2008); Peiris, Verde (2010); Bird et al (2010)  



How do you know you are not “fitting the noise”?

How do you know the model (e.g. power law, running) is OK?

Minimally parametric technique (in 3 “easy” steps):

1)Select # knots and use a piecewise cubic spline

3)Use CROSS VALIDATION to chose optimal penalty

2)Penalize the likelihood for the “wiggliness”

full  analysis is computationally expensive!



P(k)

k

*
*

*
*

*

knots

parameters

1)

2)

Cross Validation is a powerful technique to make sure one is not fitting the noise 

3)   Beware of overfitting:

HOW TO SELECT THE BEST PENALTY?



Cross Validation is a powerful technique to make sure one is not fitting the noise 

Copyright ©Andrew W. Moore



linear
quadratic Join the dots

Copyright ©Andrew W. Moore 



Copyright ©Andrew W. Moore 



Leave one out cross validation:

(example shown for
 linear model)

(CV score)

Copyright ©Andrew W. Moore 



In this example:

Leave one out CV is the ideal: does not waste much data
but it is very expensive

CV score

Copyright ©Andrew W. Moore 



The training/test set approach is similar to leave one out CV.

Train on subset of the data

(this may remind you of training sets for photo-z)



Statisticians prefer:

& compare different models



 While “leave 1 out” CV would be ideal, it is too computationally 
 intensive; we do 2-fold CV.

Split the data in 2 samples (CV1, CV2)
for each penalty value do a MCMC. 
Compute the likelihood for  the best fit model from CV1  and data of CV2 and viceversa. 
The sum of these two log likelihoods give the CV score. 
The optimal penalty is the one that minimizes the CV score.

lnk

lnP
Non-analytic
Transfer
 function



Peiris, Verde 2010


