Statistical techniques
for

data analysis in Cosmology

arXiv:0712.3028; arXiv:0911.3105
Numerical recipes (the “bible™)

Licia Verde
ICREA & ICC UB-IEEC

http://icc.ub.edu/~liciaverde

an
%ﬁ: Institut de Ciéncies U] e rC

v del C howtinl  LDUVERSITAT BB BARCELONA
el Losmos @ IE E c




outline

» Lecture 2: Monte Carlo methods.
Different type of errors. Going beyond
parameter fitting.

» Lecture 3: forecasting: Fisher matrix
approach. Introduction to model selection.

Conclusions.
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There is a BIG difference between )
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Ay as a Function of Confidence Level and  Number of parameters
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99.73% 9.(¢) 1.8 14.2 16.3 18.2 200.1
09 .99% 15.1 185.4 21.1 23.5 25.7 27.8

Only for multivariate Gaussian with constant covariance



2 . . . ”
—21n L = X From: “Numerical recipes” Ch. 15

If likelihood is Gaussian and Covariance is constant

Ag” = 6.63
T /— /
/1}/ - . Agt= 271
At =100

Example: for multi-variate Gaussian
Errors



examp le Cash 1979

Observation of N clusters is Poisson
N Ty
P =1L, [ef" exp(—e;)/n!]
n; is the number of clusters observed in the ¢ — th experimental bin
e; = I(x)ox;  ....... expected  .......

Experimental bin (mass, SZ decrement, X-ray lum, z...)

Unbinned or small bins

N
Define C=-2InP=2(FE—-)> Inl) occupancy 1 or 0 only
=1

E is the total expected number of clusters in a given model

AC Between 2 different models is chisquared-distributed!



Marginalization

P(au..q;| D) = f daj1, ...dam P(d| D)

example

v




Other data sets

If independent, multiply the two likelihoods

(can use some of them as “priors”)

Beware of inconsistent experiments!



1.2

1 II | | | | | | |
1 1
| |
1 |I
1
| 1
1 I|

14 P

1 'I
1 i
|I '.II
1 i
|I |I

10 '

nAa

Gg

0.8

Weak Lensin

0.7 |- a

0.6

D.E | | | | 1 | | |

nT N2 Na N4 N5 NA 07 NA N8 10
L

Spergel 2007



Monte Carlo methods




Monte Carlo methods

a) Monte Carlo error estimation

b) Monte Carlo Markov Chains



Your brain does it!

eSSy e
e = LIANE
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v 57

D’ <% sl

Spot the differences...




Intro to:
Monte Carlo

Simple problem: what's the mean of a large number of objects?

What's the mean height of people in PV?
n
N . . . h;
Z g If N is very large this is untractable soo... | E o
N n
1=1

If n<<N but still a fair sample, great! i—1

S
In probability: /f(x)P(a:)da: ~ %Z F(z*) if z° ~ P(z)

In Bayesian inference:

p(z|D) = / P(z|0, D)P(6]|D)d6 ~ éZP(wa,D) if 95 ~ P(6|D)



You can show that:

The estimator is unbiased
and you can quantify the variance of the estimator:
The error shrinks like S2



Very simple example:

A dumb approximation of 7

4 times the red area

[ ]
- l e o " L ol
TR 1 O<x<1 and O<y<]
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i " (0 otherwise
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L] l f
0 55k

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333

octave:2> S=1e7; a=rand(3,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418

There are better ways to compute &, so use mcmc only when right to use...



Historical note

Enrico Fermi (1901-1954) took great
delight in astonishing his colleagues
with his remakably accurate predictions
of experimental results. . . he revealed
that his “guesses” were really derived
from the statistical sampling techniques
that he used to calculate with whenever
insomnia struck in the wee morning
hours!

— The beginning of the Monte Carlo method,

M. Metropolis






Monte Carlo methods

a) Monte Carlo error estimation
Back to parameter estimation and confidence regions

Conceptual interpretation in cosmology

QL true Set of parameters known only to Mother Nature

l Statistically realiz

A Observable universe
want
Measurement (with its errors)

analysis

Do Measureddata —— a5 <= Yypy (the experimenter)

NOT a unique realization of Oy Can see



There could be infinitely many realizations
(hypothetical data sets) Dh D2, L

Each one with best fit parameters &1, X9, ....
Expect: < O >= Oltrye
If | knew the distribution of ¥ — (Xtrue That'd be all | need

Trick: say that (hope) &g ~ Ctrue

In many cases we can simulate the distribution of & — ()

Make many synthetic realizations of universes where &
Is the truth; mimic the observational process in all these
mock universes, estimate the best fit parameters from each;

map s — Qq Very important tool



How to sample from the
probability distribution?

* For some well known univariate probability
distributions there are numerical routines

http://cg.scs.carleton.ca/~luc/rnbookindex.html
* |In other cases there may be numerical techniques to
sample P(x) [more later]

« Importance sampling: (if you know how to sample
from Q but not from P)

S S
[ r@P@az= [ s giieE~ 53 s gl i« ~ Q)

Some Q are more suitable for P than others....



Monte Carlo Markov Chains

So you have a higher-dimensional probability distribution,
you want to sample in a way proportional to it ,

with a random walk

Start at an
arbitrary point

_ _ .// Take Markov steps
Goal: density of points

proportional to
the probability

Burn-in

MCMC gives approximated, correlated samples from the target distribution



b) Monte Carlo Markov Chains

http://cosmologist.info/cosmomc/

Cosmological MonteCarlo
1.02 a0
1 . 78
s 76
Using software as black box is ALWAYS a BAD idea
c” 0.96f ; t'::-i *.‘:‘ 72 T
0.941 . e
68
0.92
66
64

0,9 ' : : -
0.02 0.021 0.022 0.023 0024 0.025
2
Q .h

Samples from WMAP 5-yr likelihood combined with deuterium constraint (0805.0594)

Get help: “earch ) GOOgle” custom Search

NEW: (May 08} Support for UNION supernovae, equal-likelihood limits, WMAPS3-format chains, more confidence limits
{MariApr 08) Support for WMAPS, CMB 5Z templates, new reionization model
(Feb 08) Latest ACBAR data, CAMB update, option to use as a generic sampler

See the ReadMe file for program documentation and download. Also the CosmoloGUI documentation.



b) Monte Carlo Markov Chains

Explore likelihood surface 4

Grid-based approach
Operationally: Q2

e.g., 2 params: 10 x 10

>
O—8

6 params, 20_Pixels/dim
= 6.7 X 10"evals

say 1.6 s/eval

~1200 days!

What if you have (say) 6 parameters?

You’ve got a problem !




Markov Chain Monte Carlo (MCMC)
Standard in CMB analyses (publicly available COSMOMC)

—
= - : >OSM. params
> pld 1) p(h') tph
heH Ce

Bayes |
Likelihood Posterior
Prior of “sheep™ class
i = E . I >
RS T
Genera > oy are

“sheep”

a fair sampie o1 e nkennoou suriace



Markov Chain Monte Carlo (MCMC)

Random walk in parameter space

At each step, sample one point in parameter space

The density of sampled points OC posterior distribution

7 5
FAST: before 10 likelihood evaluations, now< 10

marginalization is easy:
just project points and recompute their density

Adding external data sets is often very easy




Operationally (Metropolis-Hastings):
aold | old
2. Try to take a random step in parameter space: aneWL new

3a. If Lnew |_OIOI Accept (take and save) the step,
“new’--> “old” and go to 2.

1. Start at a random location in parameter space:

3b. If Lnew |_ ol Draw a random number x uniform in 0,1

| " do not take the step (i.e. save “old”)
If x = Fd and go to 2.

new

do as in 3a.

L old

KEEP GOING....




“Take a random step”

The probability distribution of the step is the
“‘proposal distribution”, which you should not change once
the chain has started.

The proposal distribution (the step-size) is crucial
to the MCMC efficiency.

Steps too small step poor mixing

Steps too big step poor acceptance rate

“fair sample of the likelihood surface”, remember?




The importance of stepsize

Poor exploration

Likelihood .ignaco.1) RIS
09.8% accepts -

sigma(1l)

68.4% accepts

sigma(100)

o .
0.5% accepts | F‘ Poor exploration
"-5": Ll ':u '.:- 7 .-:l '.-': " .'.l 1 AL} >

Step number



The importance of stepsize



Take a random step

For statisticians: transition operators

Detailed balance: (beware of boundaries....)

Detailed balance means — & —x' and — &' — & are equally probable:



When the MCMC has forgotten about the starting location
and has well explored the parameter space
you're ready to do parameter estimation.

USE a MIXING and CONVERGENCE criterion!!!

Burn-in
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Gelmans and Rubin convergence

Recommended: start 4 to 8 chains at well separated points
M chains, N elements

Chain mean ‘“‘ — Z y%? j‘/ Vector with parameters value
o NM
Mean of distrib. j = Z yl '
1;.'—1

1 M |
Variance between chains B, = 7 — 1 > (7 —1)°

1
M(N—I)Z

And within W =

Always >1 by construction

NAW + B (14 %)
i N n M ,
It = T Require <1.03




Unconverged chains are just nonsense



Metropolis-Hastings is NOT the only implementation,

Other options are:

Gibbs Sampler

Rejection method

Hamiltonian Monte-Carlo

Simulated annealing (though you do not get an MCMC)



Beware of DEGENERACIES
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Reparameterization. e.g., Kososwsky et al. 2002




Even “better”:

Cosmomc has the option of computing the covariance
for the parameters

Find the axis of the multi dim. degeneracies

perform a rotation and re-scaling to obtain

azimutally symmetric contours

An improve MCMC efficiency by factor of up to 10

It is still a linear operation



Where’s the prior ?

p{8| D)

Dir = f p(6ID)mEs2de




Once you have the MCMC output:

o The density of points in parameter space gives you the posterior distribution
° To obtain the marginalized distribution, just project the points
° To obtain confidence intervals, - integrate the “likelihood” surface

-compute where e.g. 68.3% of points lie

o To each point in parameter space sampled by the MCMC give a weight
proportional to the number of times it was saved in the chain

o To add to the analysis another dataset (that does not require extra
parameters) renormalize the weight by the “likelihood” of the new data set.

No need to re-run!

warning: if new data set is not consistent with the old one--> nonsense




Errors, what errors?

Hamann et al. arXiv:0705.0440
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Prior-independence?

Once you and an MCMC output what you can do is to look
at the likelihood value not the weight.

Say you have n uninteresting
parameters and one that you are
interested in e.g. mv. For each value
of mv find the maximum likelihood
L., regardless of the values
assumed by the other parameters.
Then consider L /L., as a function
of mv.

max

Reid et al ‘10

Figure 4. The profile lkelihood defized in Section 2.3 in bins of A} me] =02
eV for e ACDM model with WAMAPSH only (crosses), WMAPSHmaxBOG
(atars), WHAPSG+-Ho (trianeles), and WMAP G+maxBCOGEHo (diamonds). The
black curves overlay a quadratic O to these poists, Dlustrating that a Gaussian

curve provides a pood it Lo this one-dimensional disteibution.



You can do it yourself! http://lambda.gsfc.nasa.gov

In particular:
http://lambda.gsfc.nasa.gov/product/map/dr4/parameters.cfm

National Aeronautics
and Space Administration

PRODUCTS

‘ =58 LAMBDA News

* LINKS * NEWS + BITE INFO

- - " e R - L <L TR O S oA AT
s Al e I L Sl S

VE Buﬂ.l: KGROUNLY DF-.T.I’;

"One Stop Shopping for

CMEB Researchers™

Data Products

+ Misslon Data
+ WMAP
+ Orveerview

+ Documents
+ Software
+ Imw
+ Education
+ COBE
+ Rellkt
+ |RAS
+ GWAS
+ CMB Related Data
+ Space Misslons
+ Suborbital CMB
+ Foreground
+ LSS Links

WMAP Cosmological Parameters Model /Dataset Matrix

WHMAPT+

BAD + LRG+ LRG+
BAD + BAD+ HO+ LRG+ HO+ HO+
SMNSALT || SNCOMNST | SNCONST | TDEL HO SMCONST CMB

BAD+

Model [all are +5Z+LENS] WHMAPT | WMAPT.1 HO

CMB

ACDM

ACDM +DELZ

ACDM+RUN

ACDM+TENS

ACDM+RUN+TENS

ACDM+I501

ACDM +1I502

ACDM+MMNU

ACDM4+YHE

WCDM+MMNU

ACDM +MNREL

ACDM+MNREL>3

OACDM

L
WCDM ® A ® .
DWCDM ® ® .

The icons indicate what data is available for 2 model/dataset pair:
A Filled Red Triangles Parameters with Markov chains [WMAP version 4.1, RECFAET version 1.5)
Filled Green Diamonds Post Processed Parameters with spectra andfor Markow chains (WMAP version 4.0, RECFAST version 1.4.2)
@  Filled Green Circles
O Hollow Blue Squares

Parameters with spectra andfor Markow chains [WMAP version 4.0, RECFAST wersion 1.4.2)

Parameters only




Beyond parameter fitting: model testing
Akaike Information criterion (Akaike 1974; Liddle 04)

AIC = —2In Lax + 2k, k=Number of parameters

Bayesian Information criterion ~ (Schwarz 78, Liddle 04)

BIC=-2InLuax + kIn N N=Number of data points

Bayesian Evidence

it does not focus on the best-fitting parameters of the

L= fﬁiﬂ}Pf(ﬂ)dE- model, but rather asks “of all the parameter values
you thought were viable before the data came along,
how well on average did they fit the data?”

Computationally expensive! (there are packages to help out there e.g. cosmonest)



D|H)P(H) Bayes

P(H | D) = =t 26
P8 D, H) = —— ﬁ}ﬁ%ﬂlm Bayes, for parameter fitting
Dy = f p(6|D) In ”L{;ﬁ )se.

Bayes for the MODEL itself

£ P(D|H]|=fd” OP(D |8, H)P(6 | H)



Suggested exercises

 Go and download the H(z) data from table 2 of the link from
http://icc.ub.edu/~liciaverde/clocks.html make a plot in the Q_ -Q,plane
marginalizing over Ho. You can do that using a grid or using a MCMC
approach.

« Add a prior given by the measurement of Ho of Riess et al.
http://arxiv.org/pdf/0905.0695

 Download one of the WMAP chains, plot confidence limits for a few
parameters and for an example of couple of parameters.

« Importance-sample it to add information from e.g. the Ho measurement or the
H(z) measurements.

« Or try to compute profile likelihood for one of the parameters and compare the
results with the standard MCMC error.

If you are familiar with numerical integrals you can try he SNelA sample
e.g., http://supernova.lbl.gov/Union/

If you are a wizard with computers you can try to install cosmomc and run chains.



Key concepts today

Recap: Likelihoods and chisquared
Confidence levels; confidence regions

Monte Carlo methods
Monte-Carlo errors
MCMC
What confidence intervals
Beyond parameter fitting (intro)

For discussion: statistical errors vs. systematic errors

Interesting literature start appearing...



Beyond parameter fitting

Going minimally parametric
Working example: the shape of the primordial P(k)
Parameter fitting e.g., : P(k)= A (k/k0)"1
Other popular options are:

Instead of fitting a function to the data, use a basis function
(wavelets, principal components etc...)

Use bins }
S
Nfzoil; **fii*i I
Piecewise linear

Spergel et al 07



How do you know you are not “fitting the noise”?

How do you know the model (e.g. power law, running) is OK?

Minimally parametric technique
Based on smoothing splines

Splines:  Piecewise polynomial (usually cubic) fit. Describe P(k) with splines

Smoothing: Suitable for looking for smooth deviations from power laws

Knots: Discrete values of k,ki. P(ki) will be “free” parameters.
Do spline for the knots

Sealfon et al (2005); Verde, Peris (2008); Peiris, Verde (2010); Bird et al (2010)



How do you know you are not “fitting the noise”?

How do you know the model (e.g. power law, running) is OK?

Minimally parametric technique (in 3 “easy” steps):

1)Select # knots and use a piecewise cubic spline

2)Penalize the likelihood for the “wiggliness”

3)Use CROSS VALIDATION to chose optimal penalty

full analysis is computationally expensive!



parameters

D \pa y * *

| | | | | > knOtS

2) lﬂgﬁzlugﬁ(Data|r:r,P(k))/+v A fk (P(k)")*dk

HOW TO SELECT THE BEST PENALTY?

3) Beware of overfitting:

Cross Validation is a powerful technique to make sure one is not fitting the noise



Cross Validation is a powerful technique to make sure one is not fitting the noise

A Regression Problem

y = f(X) + noise

. Can we learn f from this data?

X —» Let's consider three methods...

Copyright ©Andrew W. Moore



linear

_\‘\

Which is best?

y

quadratic

Join the dots

X

Why not choose the method with the

X

best fit to the data?

Copyright ©Andrew W. Moore



What do we really want?

Y| - I

X

X

Why not choose the method with the
best fit to the data?

Copyright ©Andrew W. Moore

“‘How well aré you going to predict
future data drawn from the same
distribution?”




Leave one out cross validation:

Fork=1to R
1. Let (x,,y,) be the k™ record

2. Temporarily remove (x,,y,)
from the dataset

3. Train on the remaining R-1

datapoints (example shown for
linear model)

. . 4. Note your error (x,,y,)

When you've done all points,
report the mean error(CV score)

Copyright ©Andrew W. Moore



In this example:

MSE  oocv MSE  oocv MSE, 5oy CV score
=2.12 =0.962 =3.33

Leave one out CV is the ideal: does not waste much data
but it is very expensive

Copyright ©Andrew W. Moore



The training/test set approach is similar to leave one out CV.

Train on subset of the data

1. Randomly choose
30% of the datato be in a
{est set

2. The remainderis a
training set

3. Perform your
regression on the training
X — set

4. Estimate your future
performance with the test
set

(Linear regression example)

(this may remind you of training sets for photo-z)



Statisticians prefer:

k'fOId CI’OSS Randomly break the dataset into k

. . partitions (in our example we’ll have k=3
Val |dat| on partitions colored Red Green and Blue)

2 For the red partition: Train on all the
points not in the red partition. Find
the test-set sum of errors on the red

o points.

For the green partition: Train on all the
points not in the green partition.
Find the test-set sum of errors on
the green points.

For the blue partition: Train on all the
points not in the blue partition. Find
the test-set sum of errors on the

Linear Regression blue points.

Then report the mean error
& compare different models

X —



While “leave 1 out” CV would be ideal, it is too computationally
intensive; we do 2-fold CV.

Angular scale
90° 2° 0.5° 0.2°

6000 F T T T

WMAP
Acbar 3
5000 Boomerang T

InP [

H

o

o

o
|

|

¥
3
Non-analytic § 3000 E
Transfer Y . * §
function \E- 2000 . 1} I M _
VAR "
1000 ..+ 3
Ink 0:’|||||||||I 1 1 [N N TR TR S | ]

10 100 500 1000 1500
Multipole moment [

Split the data in 2 samples (CV1, CV2)

for each penalty value do a MCMC.

Compute the likelihood for the best fit model from CV1 and data of CV2 and viceversa.
The sum of these two log likelihoods give the CV score.

The optimal penalty is the one that minimizes the CV score.



Cobli+1)/(2 m)

Ngl k)

1000

T
Ay
,

Ce b (1+1)/(2m)

1000

100

1.40
1.30

1.20
1.10
1.00
0.90

0.80
0.70 . .

L

0.0001 0.0010

0.0100

k

147

0.0001

:'__L*"'-r
i,
10000F & a‘\ a
1000
100F
1ok
0.01 0.10 1.00
k [h/Mpc]
L ™ ) B A ) B T
AF 4
WM LRG Lyo ]

12|

0.6 L

0.0010 0Q.0100 0.1000

1.0000
k

Peiris, Verde 2010



