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outline
• Lecture 1: Introduction Bayes vs

Frequentists, priors, the importance of
being Gaussian, modeling and statistical
inference, some useful tools.

• Lecture 2: Monte Carlo methods.
Different type of errors.  Going beyond
parameter fitting.

• Lecture 3: forecasting: Fisher matrix
approach. Introduction to model selection.

    Conclusions.



What’s is all about

DATA
Models,

 models parameters

LCDM?  w? etc…

?
Measurement errors

Cosmic Variance



Probabilities

Frequentists vs Bayesian

Bayesians and Frequentists often criticize each other; many physicists take a more pragmatic 
approach about what method to use.   



Probabilities

Concept of Random variable   x

Probability distribution 

Properties of probability distribution:

4. In general:

Ex. Produce examples of this last case



We might want to add:

Useful later when talking about marginalization



Bayes theorem

From 

Posterior

prior Likelihood

Fundamental difference here; “statistical INFERENCE”

Prior: how do you chose P(H)? Back to this later.



Drawbacks: Examples, discussion 

r log r

τ log τ exp(-2 τ)



Spergel et al 2007 Spergel et al 2003

?



The importance of the prior

Priors are not generally bad!



averages

Characterizing probability distributions

moments

central moments

Gaussian vs non-Gaussian



Characterizing probability distributions

x

skewness

kurtosis

Gaussian or Normal



Moments vs cumulants

For non-Gaussian distribution, the relation between central moments and 
cumulants  for the first 6 orders is

 For a Gaussian distribution all moments of order higher than 2 are specified by µ1 and µ2



Generating function 

Check that:



Central limit theorem



There are exceptions: 

Cauchy distribution 



The Poisson distribution 



The importance of Gaussian

Analytic
Simplicity 
Inflation
and  the central limit theorem



Random fields, probabilities and Cosmology

Average statistical properties

Ensamble: all the possible realizations of the true
underlying Universe

The Cosmological principle: models of the universe are 
homogeneous on average; in widely separated regions of the 
Universe the density field has the same statistical properties 

A crucial assumption: we see a fair sample of the Universe

Ergodicity then follows: averaging over many realizations is
 equivalent to averaging over  a large(enough) volume

Inference: examples

Particulary important:

Tools… statistics! Correlation functions etc…



Big advantage of being Bayesian

• Urn example

Cosmic variance

(in reality NOT transparent)



Gaussian random fields

Fourier!

Property n1: a Gaussian random field  in Fourier space 
is still Gaussian

Multi-variate Gaussian
Useful (back to this later)



Real and imaginary parts of the coefficients are randomly distributed 
And mutually independent 

Property n2

Property n3: the phases of the Fourier modes are random

From here the name Gaussian random phases

Important property:      or             completely specifies 
your Gaussian random field



threshold X

Is the density field Gaussian?

Today no way

In the beginning?

Now you can generate a Gaussian random field!



Brief digression
Useful tools:

Fourier transform of overdensity field



(2-point) Correlation function

Power spectrum

important



This implies:

Fourier transform pairs

They contain the same information!



variance

Independent of FT conventions!

PS on what scale?



Filters
Two typical choices

Remember:
Convolution in real space is multiplication in Fourier space
Multiplication in real space in convolution in Fourier space



exercise

Consider a multi variate gaussian

Where                                is the covariance.  Show that if the
     are Fourier modes   then          is diagonal.

For Gaussian fields the k-modes are independent.
 Consequences…



The importance of the power
spectrum

Spectral index

generalize Running of the
Spectral index

Beware of the pivot:



 End of digression: Back to Moments vs cumulants

For non-Gaussian distribution, the relation between central moments and 
cumulants  for the first 6 orders is

 For a Gaussian distribution all moments of order higher than 2 are specified by µ1 and µ2



Wick’s theorem
Is a method of reducing high-order derivatives to a combinatorics problem used in QFT.

Cumulant expansion theorem
Example:



Modeling of data and
Statistical inference

example

Fit this with a
line

Least squares….

Read numerical recipes chapter 15, read it again, then when you have to
apply all this, read it again.

Need a “figure of merit”



What you want:

• Best fit parameters

• Error estimates on the parameters

• A statistical measure of the goodness of
fit (possibly)

Bayesian: “what is the probability that a particular set of 
parameters is correct?”

Figure of merit: “given a set of parameters this is the probability
of occurrence”



Least squares fit….

In general: chi-squared

And what if data are correlated? 



Goodness of fit?

If all is Gaussian, the probability of χ2 at the minimum follows a 
 χ2 distribution, with ν=n-m degrees of freedom 

# data points

#parameters

Incomplete gamma function 

Goodness of fit if evaluated at the best fit



Too small Q?

a) Model is wrong!  Try again…

b) Real errors are larger

c) non-Gaussian

In general Monte-Carlo simulate….

Too large Q?

a) Errors overestimated

b) Neglected covariance?

c) Non-Gaussian (almost never..)

P.S chi-by-eye?



Confidence regions

If m is the number of fitted parameters  for which you want
 to plot the joint confidence region and p is the confidence 
limit desired, find the Δχ2  such that the probability of a chi-
Square variable with m degrees of freedom being less than 
Δχ2 is p.  Use the Q function above. 



Confidence regions

Joint confidence levels

Number of parameters

Δχ2



Likelihoods
Remember Bayes …

set

In many cases, can invoke the central limit theorem

Back to this later



Confidence levels

Bayesians =0.683.. or 0.95… or…

Integrating over the hypothesis

Classical: likelihood ratio



visually

In higher dimensions….



Questions for you

• in what simple case  can you  make an
easy identification of  the likelihood ratio
with the chi-square?

• In what case can you make an easy
identification between the two
approaches?



There is a BIG difference between 

χ

reduced
&
2

2
χ

Only for multivariate Gaussian with constant covariance 



Example: for multi-variate Gaussian

ln2! L
2!=

Errors

From: “Numerical recipes”  Ch. 15

If likelihood is Gaussian and Covariance is constant



Marginalization

example



Other data sets

If independent, multiply the two likelihoods

(can use some of them as “priors”)

Beware of inconsistent experiments!



Spergel 2007



Useful trick for Gaussian likelihoods

e.g. marginalizing over point source amplitude

result



example Cash 1979

Observation of N clusters is Poisson 

……. expected …….

Experimental bin (mass, SZ decrement, X-ray lum, z…)

Define

Between 2 different models is chisquared-distributed!

Unbinned or small bins
 occupancy 1 or 0 only



Key concepts today

• Random fields and cosmology

• Probability

• Bayes theorem

• Gaussian distributions (and not)

• Modeling of data and statistical inference

• Likelihoods and chisquared

• Confidence  levels; confidence regions (intro)



question

Have used the product of Poisson distributions
 so have assumed independent processes…

Clusters are clustered…


