Dark matter from Dark Energy-Baryonic Matter Couplings

Alejandro Avilés 1,2

1 Instituto de Ciencias Nucleares, UNAM, México

2 Instituto Nacional de Investigaciones Nucleares (ININ) México

January 10, 2010
Cosmología en la Playa 2011
Puerto Vallarta
Outline

- Motivations
- Interactions with the Trace of the Energy Momentum Tensor
- Background Cosmology
- Cosmological Perturbations
- Summary and Conclusions
Motivations

- **Dark Degeneracy** [M. Kunz PRD 80, 123001 (2009)]: Dark components in the Universe are defined through

\[8\pi G T_{\mu\nu}^{\text{dark}} = G_{\mu\nu} - 8\pi G T_{\mu\nu}^{\text{obs}} \]

- Interacting models between dark energy and matter fields have been proposed in order to ameliorate the Coincidence Problem.
 - But, this interactions give rise to long range undetected new forces.
 - Some screening mechanism have been proposed in order to evade fifth forces and equivalence principle tests.[Khoury and Weltman PRD 69, 044026 (2004)]

- In some interactions the continuity equation of baryonic matter is preserved.
Motivations

▶ **Dark Degeneracy** [M. Kunz PRD 80, 123001 (2009)]: Dark components in the Universe are defined through

\[8\pi G T_{\mu\nu}^{\text{dark}} = G_{\mu\nu} - 8\pi G T_{\mu\nu}^{\text{obs}} \]

▶ Interacting models between dark energy and matter fields have been proposed in order to ameliorate the **Coincidence Problem**.

▶ But, this interactions give rise to long range undetected new forces.
▶ Some screening mechanism have been proposed in order to evade fifth forces and equivalence principle tests.[Khoury and Weltman PRD 69, 044026 (2004)]

▶ In some interactions the **continuity equation** of baryonic matter is preserved.
Motivations

- **Dark Degeneracy** [M. Kunz PRD 80, 123001 (2009)]: Dark components in the Universe are defined through

 \[8\pi G T^{dark}_{\mu\nu} = G_{\mu\nu} - 8\pi G T^{obs}_{\mu\nu}\]

- Interacting models between dark energy and matter fields have been proposed in order to amelliorate the **Coincidence Problem**.

 - But, this interactions give rise to long range undetected new forces.
 - Some **screening mechanism** have been proposed in order to evade fifth forces and equivalence principle tests.[Khoury and Weltman PRD 69, 044026 (2004)]

- In some interactions the continuity equation of baryonic matter is preserved.
Motivations

- **Dark Degeneracy** [M. Kunz PRD 80, 123001 (2009)]: Dark components in the Universe are defined through

\[
8\pi G T_{\mu\nu}^{\text{dark}} = G_{\mu\nu} - 8\pi G T_{\mu\nu}^{\text{obs}}
\]

- Interacting models between dark energy and matter fields have been proposed in order to ameliorate the Coincidence Problem.

 - But, this interactions give rise to long range undetected new forces.
 - Some screening mechanism have been proposed in order to evade fifth forces and equivalence principle tests.[Khoury and Weltman PRD 69, 044026 (2004)]

- In some interactions the continuity equation of baryonic matter is preserved.
Interactions with the trace of the energy momentum tensor

\[S = S_\phi + S_m + S_{\text{int}} \]

\[T = g^{\mu\nu} T_{\mu\nu} , \]

\[S_{\text{int}} = \int d^4x \, A(\phi) \, T \sqrt{-g} . \]

\[T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta(S_m + S_{\text{int}})}{\delta g^{\mu\nu}} . \]

- **Fermionic Field**

\[L = -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - m) \psi + A(\phi) \, T \sqrt{-g} \]

\[\rightarrow \quad -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - e^{\alpha(\phi)} m) \psi \]

\[e^{\alpha(\phi)} = \frac{1}{1 - A(\phi)} \]

- **Electromagnetic Field**

\[L = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} + A(\phi) \, T \sqrt{-g} \]

\[\rightarrow \quad -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} \]

- **Perfect Fluid**

\[L = -\rho \sqrt{-g} + A(\phi) \, T \sqrt{-g} \]

\[\rightarrow \quad -e^{\alpha(\phi)} \rho \sqrt{-g} \]
Interactions with the trace of the energy momentum tensor

\[S = S_φ + S_m + S_{\text{int}} \]
\[T = g^{\mu\nu} T_{\mu\nu}, \]
\[S_{\text{int}} = \int d^4 x A(\phi) T \sqrt{-g}. \]
\[T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta (S_m + S_{\text{int}})}{\delta g^{\mu\nu}} \]

▶ Fermionic Field

\[\mathcal{L} = -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - m) \psi + A(\phi) T \sqrt{-g} \]
\[\longrightarrow -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - e^{\alpha(\phi)} m) \psi \]

▶ Electromagnetic Field

\[\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} + A(\phi) T \sqrt{-g} \]
\[\longrightarrow -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} \]

▶ Perfect Fluid

\[\mathcal{L} = -\rho \sqrt{-g} + A(\phi) T \sqrt{-g} \]
\[\longrightarrow -e^{\alpha(\phi)} \rho \sqrt{-g} \]
Interactions with the trace of the energy momentum tensor

\[S = S_\phi + S_m + S_{\text{int}} \]
\[T = g^{\mu\nu} T_{\mu\nu}, \]
\[S_{\text{int}} = \int d^4x \; A(\phi) \; T \sqrt{-g}. \]
\[T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta(S_m + S_{\text{int}})}{\delta g^{\mu\nu}} \]

▶ Fermionic Field

\[\mathcal{L} = -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - m) \psi + A(\phi) T \sqrt{-g} \]
\[\rightarrow -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - e^{\alpha(\phi)} m) \psi \]
\[e^{\alpha(\phi)} = \frac{1}{1 - A(\phi)} \]

▶ Electromagnetic Field

\[\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} + A(\phi) T \sqrt{-g} \]
\[\rightarrow -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} \]

▶ Perfect Fluid

\[\mathcal{L} = -\rho \sqrt{-g} + A(\phi) T \sqrt{-g} \]
\[\rightarrow -e^{\alpha(\phi)} \rho \sqrt{-g} \]
Interactions with the trace of the energy momentum tensor

\[S = S_\phi + S_m + S_{\text{int}} \]

\[T = g^{\mu\nu} T_{\mu\nu}, \]

\[S_{\text{int}} = \int d^4 x \; A(\phi) T \sqrt{-g}. \]

\[T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta (S_m + S_{\text{int}})}{\delta g^{\mu\nu}} \]

\[\text{Fermionic Field} \]

\[\mathcal{L} = -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - m) \psi + A(\phi) T \sqrt{-g} \]

\[\rightarrow -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - e^{\alpha(\phi)} m) \psi \]

\[\text{Electromagnetic Field} \]

\[\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} + A(\phi) T \sqrt{-g} \]

\[\rightarrow -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} \]

\[\text{Perfect Fluid} \]

\[\mathcal{L} = -\rho \sqrt{-g} + A(\phi) T \sqrt{-g} \]

\[\rightarrow -e^{\alpha(\phi)} \rho \sqrt{-g} \]
Interactions with the trace of the energy momentum tensor 1

\[S = S_\phi + S_m + S_{\text{int}} \]

\[T = g^{\mu\nu} T_{\mu\nu}, \quad T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta(S_m + S_{\text{int}})}{\delta g^{\mu\nu}} \]

- Fermionic Field

\[\mathcal{L} = -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - m) \psi + A(\phi) T \sqrt{-g} \]
\[\rightarrow -\sqrt{-g} \bar{\psi} (i \gamma^\mu \partial_\mu - e^{\alpha(\phi)} m) \psi \]

- Electromagnetic Field

\[\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} + A(\phi) T \sqrt{-g} \]
\[\rightarrow -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \sqrt{-g} \]

- Perfect Fluid

\[\mathcal{L} = -\rho \sqrt{-g} + A(\phi) T \sqrt{-g} \]
\[\rightarrow -e^{\alpha(\phi)} \rho \sqrt{-g} \]
Interactions with the trace of the energy momentum tensor

Action

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} \phi^{,\alpha} \phi_{,\alpha} - V(\phi) - A(\phi) T - \rho \right], \]

Field Equations

\[G_{\mu\nu} = 8\pi G (T^\phi_{\mu\nu} + e^{\alpha(\phi)} T^b_{\mu\nu}), \]

\[\Box \phi - V'(\phi) = \alpha'(\phi) e^{\alpha(\phi)} \rho, \]

\[V_{ef}(\phi) = V(\phi) + e^{\alpha(\phi)} \rho. \]

Conservation Equations:

1. **Continuity Equation**

\[\nabla^\mu (\rho u_\mu) = 0, \]

2. **Geodesic Equation**

\[u^\mu \nabla_\mu u^\nu = -\alpha'(\phi) (g^\mu\nu + u^\mu u^\nu) \partial_\mu \phi. \]

Newtonian Limit

\[\frac{d^2 \tilde{X}}{dt^2} = -\nabla \Phi_N - \nabla \alpha(\phi) \]
Interactions with the trace of the energy momentum tensor 2

- **Action**

\[
S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} \phi^{\alpha} \phi_{,\alpha} - V(\phi) - e^{\alpha(\phi)} \rho \right].
\]

- **Field Equations**

\[
G_{\mu\nu} = 8\pi G \left(T_{\mu\nu}^\phi + e^{\alpha(\phi)} T_{\mu\nu}^b \right),
\]

\[
\Box \phi - V'(\phi) = \alpha'(\phi) e^{\alpha(\phi)} \rho,
\]

\[
V_{\text{ef}}(\phi) = V(\phi) + e^{\alpha(\phi)} \rho.
\]

- **Conservation Equations:**

1. **Continuity Equation**

\[
\nabla^\mu (\rho u_\mu) = 0,
\]

2. **Geodesic Equation**

\[
\dot{u}^\mu \nabla_\mu u^\nu = -\alpha'(\phi) (g^{\mu\nu} + u^\mu u^\nu) \partial_\mu \phi.
\]

- **Newtonian Limit**

\[
\frac{d^2 \vec{X}}{dt^2} = -\nabla \Phi_N - \nabla \alpha(\phi)
\]
Interactions with the trace of the energy momentum tensor 2

Action

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} \phi \alpha \phi,\alpha - V(\phi) - e^{\alpha(\phi)}\rho \right]. \]

Field Equations

\[G_{\mu\nu} = 8\pi G (T_{\mu\nu}^\phi + e^{\alpha(\phi)} T_{\mu\nu}^b), \]

\[\Box \phi - V'(\phi) = \alpha'(\phi) e^{\alpha(\phi)}\rho, \]

\[V_{ef}(\phi) = V(\phi) + e^{\alpha(\phi)}\rho. \]

Conservation Equations:

1. **Continuity Equation**

\[\nabla^\mu (\rho u_\mu) = 0, \]

2. **Geodesic Equation**

\[u^\mu \nabla_\mu u^\nu = -\alpha'(\phi) (g^{\mu\nu} + u^\mu u^\nu) \partial_\mu \phi. \]

Newtonian Limit

\[\frac{d^2 \vec{X}}{dt^2} = -\nabla \Phi_N - \nabla \alpha(\phi) \]
Interactions with the trace of the energy momentum tensor

Action

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} \phi,\phi, - V(\phi) - e^{\alpha(\phi)} \phi \right]. \]

Field Equations

\[G_{\mu\nu} = 8\pi G(T^{}_{\mu\nu} + e^{\alpha(\phi)} T^b_{\mu\nu}), \]

\[\Box \phi - V'(\phi) = \alpha'(\phi)e^{\alpha(\phi)} \rho, \]

\[V_{ef}(\phi) = V(\phi) + e^{\alpha(\phi)} \rho. \]

Conservation Equations:

1. Continuity Equation

\[\nabla^\mu (\rho u_\mu) = 0, \]

2. Geodesic Equation

\[u^\mu \nabla_\mu u^\nu = -\alpha'(\phi)(g^{\mu\nu} + u^\mu u^\nu) \partial_\mu \phi. \]

Newtonian Limit

\[\frac{d^2 \ddot{X}}{dt^2} = -\nabla \Phi_N - \nabla \alpha(\phi) \]
Interactions with the trace of the energy momentum tensor 2

► Action

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} \phi^{\alpha,\alpha} - V(\phi) - e^{\alpha(\phi)} \rho \right]. \]

► Field Equations

\[G_{\mu\nu} = 8\pi G (T_{\mu\nu}^\phi + e^{\alpha(\phi)} T_{\mu\nu}^b), \]

\[\Box \phi - V'(\phi) = \alpha'(\phi) e^{\alpha(\phi)} \rho, \]

\[V_{ef}(\phi) = V(\phi) + e^{\alpha(\phi)} \rho. \]

► Conservation Equations:

1. Continuity Equation

\[\nabla^\mu (\rho u_\mu) = 0, \]

2. Geodesic Equation

\[u^\mu \nabla_\mu u^\nu = -\alpha'(\phi) (g^{\mu\nu} + u^\mu u^\nu) \partial_\mu \phi. \]

► Newtonian Limit

\[\frac{d^2 \vec{X}}{dt^2} = -\nabla \Phi_N - \nabla \alpha(\phi) \]
Background Cosmology 1

\[H^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) + (e^{\alpha(\phi)} - 1) \rho + \rho \right) \]

\[\ddot{\phi} + 3H \dot{\phi} + V'(\phi) + \alpha'(\phi)e^{\alpha(\phi)}\rho = 0 \]

\[\dot{\rho} + 3H \rho = 0 \]

\[\rho_{\text{dark}} = \rho_{\phi} + (e^{\alpha(\phi)} - 1) \rho \]

\[\dot{\rho}_{\text{dark}} + 3H(1 + w_{\text{dark}}) \rho_{\text{dark}} = 0, \]

\[w_{\text{dark}} \approx -\frac{1}{1 + \frac{e^{\alpha(\phi)} - 1}{V(\phi)} \rho_0 a^{-3}}. \]

\[V(\phi) = \frac{M_{n+4}}{\phi^n} \]

\[e^{\alpha(\phi)} = e^{-\frac{\beta}{M_P} \phi} \]

\[V(\phi) = \frac{1}{2} m_{\phi}^2 \phi^2 \]

\[e^{\alpha(\phi)} = 1 + \frac{1}{2} \frac{\beta}{M_P^2} \phi^2 \]
Background Cosmology 1

\[H^2 = \frac{8\pi G}{3}\left(\frac{1}{2}\dot{\phi}^2 + V(\phi) + (e^{\alpha(\phi)} - 1)\rho + \rho\right) \]
\[\ddot{\phi} + 3H\dot{\phi} + V'(\phi) + \alpha'(\phi)e^{\alpha(\phi)}\rho = 0 \]
\[\dot{\rho} + 3H\rho = 0 \]
\[
\rho_{\text{dark}} = \rho_\phi + (e^{\alpha(\phi)} - 1)\rho
\]
\[\dot{\rho}_{\text{dark}} + 3H(1 + w_{\text{dark}})\rho_{\text{dark}} = 0, \quad w_{\text{dark}} \approx -\frac{1}{1 + \frac{e^{\alpha(\phi)} - 1}{V(\phi)}\rho_0 a^{-3}}. \]

\[V(\phi) = \frac{M^{n+4}}{\phi^n} \]
\[e^{\alpha(\phi)} = e^{-\frac{\beta}{M_P} \phi} \]
\[V(\phi) = \frac{1}{2} m_{\phi}^2 \phi^2 \]
\[e^{\alpha(\phi)} = 1 + \frac{1}{2} \beta \frac{\phi^2}{M_P^2} \]
Background Cosmology 1

\[H^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) + (e^{\alpha(\phi)} - 1)\rho + \rho \right) \]
\[\ddot{\phi} + 3H\dot{\phi} + V'(\phi) + \alpha'(\phi)e^{\alpha(\phi)}\rho = 0 \]
\[\dot{\rho} + 3H\rho = 0 \]
\[\rho_{\text{dark}} = \rho_{\phi} + (e^{\alpha(\phi)} - 1)\rho \]
\[\dot{\rho}_{\text{dark}} + 3H(1 + w_{\text{dark}})\rho_{\text{dark}} = 0, \]
\[w_{\text{dark}} \approx -\frac{1}{1 + \frac{e^{\alpha(\phi)} - 1}{V(\phi)}\rho_0 a^{-3}}. \]

\[V(\phi) = \frac{M^{n+4}}{\phi^n} \]
\[e^{\alpha(\phi)} = e^{-\frac{\beta}{M_P} \phi} \]

\[V(\phi) = \frac{1}{2} m_{\phi}^2 \phi^2 \]
\[e^{\alpha(\phi)} = 1 + \frac{1}{2} \frac{\beta}{M_P^2} \phi^2 \]
\[\beta = 0.04 \Rightarrow \frac{\beta}{M_p^2} \sim G \]
Supernovae Ia Fit

UNION 2 [R. Amanullah et al. (SCP), Astrophys. J. 716, 712 (2010).]

\[z = \frac{1}{a} - 1 \]

\[\mu = 5 \log_{10} \left(\frac{d_L}{\text{Mpc}} \right) + 25 \]

\[d_L(z) = (1 + z) \int_0^z \frac{dz'}{H(z')} \]

\[C_1 = e^{\alpha(\phi)} - 1 \bigg|_{\text{today}} \rho \]

\[C_2 = e^{\alpha(\phi)} - 1 \bigg|_{\text{today}} \]
Cosmological Perturbations

- Scalar perturbations on longitudinal gauge

\[ds^2 = -(1 + 2\Psi)dt^2 + a^2(t)(1 - 2\Phi)\delta_{ij}dx^i dx^j \]

- Perturbed variables

\[
\begin{align*}
\rho(\vec{x}, t) &= \rho_0(t)(1 + \delta(\vec{x}, t)) \\
\phi(\vec{x}, t) &= \phi_0(t) + \delta\phi(\vec{x}, t) \\
u^\mu(\vec{x}, t) &= u^\mu_0 + \frac{1}{a} v^\mu(\vec{x}, t)
\end{align*}
\]
Cosmological Perturbations

- Scalar perturbations on longitudinal gauge

\[
\begin{align*}
\text{ds}^2 &= -(1 + 2\psi)dt^2 + a^2(t)(1 - 2\Phi)\delta_{ij}dx^i dx^j \\
\end{align*}
\]

- Perturbed variables

\[
\begin{align*}
\rho(\vec{x}, t) &= \rho_0(t)(1 + \delta(\vec{x}, t)) \\
\phi(\vec{x}, t) &= \phi_0(t) + \delta\phi(\vec{x}, t) \\
u^\mu(\vec{x}, t) &= u_0^\mu + \frac{1}{a}v^\mu(\vec{x}, t)
\end{align*}
\]
Cosmological Perturbations

- Scalar perturbations on longitudinal gauge

\[ds^2 = -(1 + 2\Psi)dt^2 + a^2(t)(1 - 2\Phi)\delta_{ij}dx^i dx^j \]

- Perturbed variables

\[
\begin{align*}
\rho(\vec{x}, t) &= \rho_0(t)(1 + \delta(\vec{x}, t)) \\
\phi(\vec{x}, t) &= \phi_0(t) + \delta\phi(\vec{x}, t) \\
u^\mu(\vec{x}, t) &= u_0^\mu + \frac{1}{a} v^\mu(\vec{x}, t)
\end{align*}
\]
Cosmological Perturbations 2

\[\beta = 0.01 \]

\[\beta = 0.04 \]
Conclusions

- Interactions between dark energy and baryonic matter could be an alternative to some of the dark matter in the Universe.

- Couplings to the trace of the energy momentum tensor are suitable for this purpose:
 - The interaction to the electromagnetic field and to relativistic matter become zero.
 - The continuity equation of matter is preserved.

- The numerical analysis shows that these models are capable of reproducing the observed background cosmology. Also, that linear perturbations have an acceptable behavior.
Thank you

A.A. and Jorge L. Cervantes-Cota. To be published in PRD
arXiv: 1012.3203