1 . .
1 1
+5 Ma(8) (97 +1)° + 5 Ms(8) (97 +1)° +

3!

1
g° - —1—27%—7%2+—2(87;7T)2
a

a? a?

)2 )2
S, = / d*zy/—g [ M H (WQ _ (om) ) + 20} (7%2 0T ) - %M‘lﬁ?’]
Parameters: [, H : H ., My, Ms

Structure is set by the symmetries, the requirement that everything can be incorporated
into the metric by a suitable choice of coordinates. Specific signs and coefficients in front

of various terms, requirement of certain interactions, difference between tjme and space
derivatives.




M: changes the dispersion relation of modes, introducing a “sound speed”. Same
term that changes the propagation speed generates interactions.

: 2 21.2
1 —c2 M3 H w* =cik

2
s 2

M= —

c? a? 3c

WE )2 2 T )2 .
g / e #[ B (ﬁg_cz(am )_MPlHﬁ@m 285 b




Observational Consequences: 3-pt function

ko ks

k9 (Cr1CraCrs) = F(k_l’ H)

Higher order moments, departure from Gaussianity are sensitive to the interactions.
Even after requiring scale invariance and translation invariance the three point function is still
an arbitrary function of two continuous variable.




a2

S — /d4x\/_[ M2, (W2 _ (8-7T)2> o (W g _7,T(&L~7r)2) B %M%?}]

Just two specific shapes for this two shapes are predicted from each of the
two possible interactions:

7’ w(9;m)?




Estimating the 3-pt function

2
Cs

g _ /d4x\/jg [_Mng <7-T2 _ 2 (8i7r)2> B M1:2>1H7-T(ai77)2 _ g@

a2




Iwo shapes are possible

r - fzf/cs

S, = /dtd35s\/—_g % (7.@ _ (5mc>2> - ( 1

......




The Squeezed limit  x, < g, ~ £,

r

— 2

(() = Cg(x) + fNL§g2(:L‘) 4.

Maldacena 2002

n single clock models there
18 a direct connection between
the departures from scale

r

Non-Gaussianities -~ (n — 1 ) 1()7 2 invariance and the three point

function.




Consistency relation

lim (Ca, Cr, Cay) = —(27)303( Zk s—1) Py, Py,

kI1—>

—

(G G ) = 2m)8° (ks + kj ) P, (CC) ~ k—3+(ns—1)

k
ks
ds® = —dt® + GQC(x)a(t)2dx7;d:137; For modes outside the horizon
0 d

3¢ C@CO) - =22 (C@)0) - ¢




The shapes in pictures
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Observational Consequences: 4-pt function

kg ]{3 k’4

k7 (Chy Chp Chs Cy ) = F(/ﬁ, e kl,H,

Higher order moments have even more freedom.

®)

Even after requiring scale invariance and translation invariance the four point function is still an

arbitrary function of five continuous variable.

Senatore & MZ in preparation.
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Could one have an observable 4-pt function without a much
larger 3-pt?

SE.H. + S.F. — /d T A\ — { MI%IR -+ ME)IHQOO Mgl(SHz -+ H) +

+5Mz(t)4<g°“+ 1 + 2 My(0) (g™ + 1) +

3!

1
90 = —1-2r -7+ (o)
a

Although there are quartic interactions inside (goo+1)? and (goo+1)? quartic terms, those are
very small given current constraints on the three point function.

11




Could one have a large 4-pt function

L 1
900 — —1 —2m — 7T2 + E(({%W)Q (900 —+ 1)2
4
My (Oym)* ) L ~ %62

<C2>2 L_2 E~H Cs

contains quartic terms

Ly 1 1
ISR I (S

Lolgow  C5 Cs

1 1 Errors on the level of non-G are
2 o . o
AlfniC] ~ 75 AlrnrC7] ~ 3" S|m|Ia!~ for 3 and 4 pt functions.
NpiX ]\fpiX The signal generated by these
operators is very small.




Could one have a large 4-pt function

What about starting with an operator that does not have a cubic interaction?

My (6g™)* — My (167" — 327°(9,m)* + 247° (9, m)* — 87(0,m)® + (0,m)°)

<C4> ~ TNLCZ ~ g ~ Méil CQ — TNL ~ Méil
(¢?)? Lolpoy  HMp, H Mg,

. . L H*
Aé(l] N (HM132>1)2 N (HM122>1) TNLC2 ~ L—;L ~ A—4U

Mf TN E~H




Could one have an observable 4-pt function without a much
larger 3-pt?

Could one have a (goo+1)* terms without (goo+1)2 and (goo+1)3 ones?

My (6g™)* — My (167* — 327°(9,7)* + 247°(9,m)* — 87 (9,m)° + (8,7)°)

Although loop corrections generate 3-pt interactions they can be consistently small.

Mi(6g™)  —  HM(69™)* , HME(59) fnp~1




kg kg k’49

k7 (Chy Chp Chis Cy ) = F(,ﬁ, Pl

®)

Although an arbitrary function of five continuous variable only one possibly large shape from

single clock models, created by the interaction
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Searching for the signal

The best data set 1s the one with the largest number of high signal to
noise measurements (pixels, Fourier modes). Constraints go as

N—1/2

pix

WMAP and future all sky CMB experiments are the most
promising.

Surveys of hydrogen at high redshift using its 21 ¢cm line could
potentially do better.




The basics of CMB Anisotropies

0T Oy | U
- = b + Zy + ?r Tight Coupling

All 3 effects have the same origin

P ~ )\TV’U

F'ree Streaming

Observer Today

-200 T (uK) +200




Analysis

Optimal weight Three point
. function
£ = F ’ lz: (L1ymy algrnz@
Amplitude of
L[ BE — primordial fluctuations
Alm = 47i / (271")3Al (A)‘D(IL lm(k’)

Primordial 3 point
function /

(® (k1)@ (ka)®(ks)) = (2m)6° (k1 + ko + k3) F(k1, k3, k3)

Computationally very difficult unless F is factorizable:

F = g1(k1)g2(k2)gs(ks) + - -




27 7 (9;7)2
Froimy2(k1, ko, kg) = T N(L " A2

(2450 — BIG K, K, — 8K, K\ ? 4 22K K — K52 K,* + 2K,°)

. 1
Fis(ky, ko, ks) = 162 f7, A2 - YT
3 1

Ky = ky+ky+ks,
Ky = (kiko + koks + kski)"/?
Ky = (kikoks)'?

K39K,3

F(k,k k)= fnr -

6A2
k6




Fay-Foy= Y Fuylky ko, ks)Fy(ky, ko, ks)/ (Pe, P, P,

physical
ki

Foy - Fe

cos(F1y, Flay) =

Cos (F.F )

10
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~10 \5
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——t-0—

10

(Fay - Fla)) V2 (Fo) - Fiz))'/?
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Cos (F . Fy..)
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Figure 2: Left: Cosine of single-field shape with the equilateral shape as we vary ¢3 with ¢; < 1, the
regime in which it is independent of ¢;. The two horizontal lines represent when the scalar product
is equal to £0.7, to give a rough measure of when the cosine becomes small. Right: Cosine with the

local shape.




Current constraints on single clock models

From WMAP 5 yr data release

—125 < fedml <435 95% CL

—369 < fohos <71 95% CL

——— > ¢, > 0.011 95% CL

Power Sfectrum
62
(@, @f, Pp,) = (27)°6" Zk (K1, k2, ks) F(k, k k)= fnr - k(;p :
oy _ 85 (1
fNL 324( c2> ’
10 1\ /. 3,
i (1) (5 27)

Smith, Senatore, MZ 0905.3746




100000 ————— —
‘\ x Non-interacting model (¢s = 1,¢3 = 0)

\ - - DBI inflation (¢3 = 3(1 — ¢2)/2)
\ -
Vo (A =0
50000 | Y B WMAP lo region
Y B WMAP 20 region
AN WMAP 30 region
|
T o
&

—50000 |

—~100000 — — -
10 10~ 10~ 107

Sound speed ¢4

c. > 0.011 at 95% CL One cannot put a bound on cs if only
one shape is measured.

—125 < fomil < 435 at 95% CL

—369 < fy"F <71 at 95% CL -




Current constraints on the local shape

—4 < R <80 95% CL

Our error bars are roughly 40% smaller than previous analysis.

We outperform the previous analysis on both the large and small scales.
Our results are robust to doing different cuts on the data (3 yr vs Syr,
details of the mask, range of 1 used). All the differences we see are

consistent with being statistical.

We see no evidence of foreground contamination and we are robust to the
procedure used to subtract point sources.

Smith, Senatore & MZ 0901.2572
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Figure 1: Current constraints on f)¢?. Errors in this figure and throughout the paper are 2-o.
Panel (a) best results from WMAP 5 years from the WMAP team [10] and WMAP 3 years
from Yadav & Wandelt [11] together with the large scale structure results from Slosar et al
[15] and the results from this paper using our optimal method (OPT). Panel (b) comparison
of [10] and [11] for the same choice of analysis parameters (/4. = 500, raw maps and the Kp0

mask). Panels (c) and (d) show the effect of the mask for cleaned and raw maps respectively
(from [10]).
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Figure 2: Constraints on fy{* using 5-year data and KQT75 mask, using both the optimal
estimator (squares) and the old estimator applied to clean maps (triangles). The top panel
shows cumulative results (constraints using all the information up to a given ¢) while the
bottom one shows contributions from separate ¢ bins. Our overall flo¢! estimate, taking

lax = 750, is (38 & 21) for the optimal estimator and (55 + 33) for suboptimal.
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Figure 4: Top panel: Comparison between 3-year results reported in [11] and results obtained
from our pipeline, using either the optimal or suboptimal estimator. We apply the suboptimal
estimator to 3-year raw maps for consistency with [11]. Bottom panel: Comparison between
5-year results (optimal estimator, raw maps) reported in [10] and results obtained from our
pipeline using the optimal or suboptimal estimator. We apply the suboptimal estimator to
5-year clean maps for consistency with [10].
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using 5-year data and KQ75 mask, using both the optimal
estimator (squares) and the old estimator applied to clean maps (triangles). The top panel
shows cumulative results (constraints using all the information up to a given ¢) while the
bottom one shows contributions from separate ¢ bins. Our overall fi5? estimate, taking

lax = 750, is (38 & 21) for the optimal estimator and (55 + 33) for suboptimal.
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Figure 7: fl¢l estimates with varying minimum multipole £y, using the optimal foreground-

marginalized estimator, five-year data, KQ75 mask, and taking ¢,.,. = 750 throughout.




Could one extract more information using other statistics?

4 Point function

1 Other statistics have been

Iq -

1000k trispectrum
p T Vb suggested such as Minkowski
li : functionals, various wavelets,
o ] etc. It has also been suggested
5 0001f that higher order terms in the
3 .
a expansion can be detected.
le-Oéi- it
Rt
le‘09=“"1'0 e 5000
lmax

FIG. 2: Predicted signal-to-noise ratio squared, (S/N)z, of the angular trispectrum and bispectrum with the full radiation
transfer function for fnyi, = 50 and fo = 1. Power-law fits are also shown. Note that the power-law fits break down at
Imax 2 3000, where the gravitational lensing effects become important: (S/ N)2 ceases to grow at lmax ~ 3000 [2, 6].

Kogo & Komatsu, Hu & Okamoto

One can compute the full likelihood for fnl and calculate the best constraints that can be
obtained by any statistic, the Cramer-Rao bound. Basically all the information is contained in
the three point function.

Creminelli, Senatore and MZ




Construction of the Action

S = [d's y=g[GMER - c()® ~ A) + 5 M) 6% + P + g (0)! (6" + 1) +

M (t)3 Mo(t)? Mt y
—%(QOO—I—U(SK“M— 2(t) SK*,2 — 3(1)° 2 5K K,
Exercises:
|. Show that the various terms are
, 1 invariant under time dependent spatial
H® = 5 [C(t) + A(t)] changes in coordinates
3Mg, , ,

. ) 2.Vary the action with respect to the
@ _ H+H? = — 5 [Qc(t) — A(t)] , metric to obtain background

@ 3Mp, equations. Plug solution back into the

action for the fluctuations. Convince
yourself that the action starts
quadratic.

1 . .
S = /d4$ \/—9[§M1:2>13 + Mp Hg™ — Mp(3H* + H) +

Y 3
——Mlét) (9

,M() "+ 1)+ ,M() P+ 1)+

2! 3!

My (t)?
2

Ms(t)?

0 4 16K, — SR, 2 = =LK 0K + (10)




Connection to scalar field examples

Simple Examples:
[dtov=g|-5002 - vie)| - [ d‘w—[ 20U 0 v (go(0)

bo(t)? = —2MpH and V(¢(t)) = Mpy(3H + H)

K-Inflation
L = P(X,¢), with X = g"’ 8,68, ¢.
- / 242 /=g P(do(t)%4%, (1))

ME(t) = do(t) 0" P/OXT




1

Introducing the T1: An analogy L =1|D,d]>=V(|¢|) — —~F F*
4 v

¢ N eie(m)qs
D¢ =0,0+1qA,¢

1
Ay = Ay = 0,0

Q  radius of the minimum

V(0) reparametrize ¢

g """ § b = pe'/e

‘\s_.—‘ 0 What is the Lagrangian for the fluctuations?

¢1 | Call M the curvature in the radial direction.




1 1 1 1 1
L=5(dp)* — sM?p* — 2 F? — ?a A, A" + S (9a)® + Sagd,aAr

2 2 4 2 2
Mas.swta radial Vector modes Goldstone Boson
excitations

gb N eiQ(x) Cb Can always choose gauge where « is 0.At low energies massive vector
that has three polarization. m% = ¢*a*
Qb _ peia/a

However at energies above the mass of the vector the mixing terms are
unimportant so talking about the Goldstone is useful.

V(9)
( The gauge symmetry of the example is equivalent to
J the freedom in GR to change the time coordinate.

The gauge where there is no Goldstone (the Unitary

’ ‘ gauge) is equivalent to the gauge where there is no
i i
. 3 v
——
0 o — T

(l)[ I Emix —mag — \/EH




(7 - O7)?

2 2
]._7-(-1_7-‘-2_"'

106> — (9m1)* + (Oma)* + -+ - +

The Goldstones interact but there is a range

of energies for which they are both weakly
coupled and are decoupled from the rest.

ma < b < q In Inflation because H falls exactly in this

range, the description with the Goldstones is
quite simple.




Gravitational waves

SEH. 4+ 8.F. = /d433 V —9 M H g™ — ME(3H? + H) +

1 1
+—My(t)* (g™ +1)* + §M3(t)4(g‘30 +1)% +
¢

2!
j 3 j 2 |/ 2
O (9" + 1)K, — Myt 0K, — —M?’Q(t) OK", 0K, + ...

2

The action for gravitational wave perturbations in unchanged by the additional terms.
Each polarization of the gravity waves, once properly normalized, has the same quadratic
action as a massless scalar field so it will have fluctuations.

H
Mpr,

MPLh,uI/ — ¢ h,uu ~




The energy scale of inflation: gravitational
waves

Inflation predicts the presence of a stochastic
Background of Gravitational Waves

, H
Y Mpy
If H 10-° ‘ Comparable to density
Mpr - perturbations

Directly measure the expansion rate during Inflation.
This measurement has taken a greater significance now that it
appears that GW might not be observable in *“string-inflation”.




Current constraints come from fitting  Current constraints from WMAP 5 yrs
the shape of the temperature power

spectrum. S —
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Effective field theory for Quintessence

1 1 (Vm)?2 3.
_ 4.3 4\ -2
S = /d ratly (pq +pg +4M*) 7° — 5(PQ+I?Q)7 5
_ . 2
M? : h 2
M (ams - 3fm o YT ] .
a
(1+wQ)QQ
Ghost
~Y M2
_ Mg
o <HY GC | 9
: ) CS
. GC 1
~ L N
My
Gradient
instability Ghost
~ — 1 DSOS s
Grad. 4]eans

Figure 2: On the quintessential plane, we show the theoretical constraints on the equation of state
and speed of sound of quintessence, in the presence of the operator M. Instability regions are dashed.
Where 1 +wgq and cg have opposite sign we have a ghost-like instability corresponding to negative
kinetic energy. For wg < —1, the dashed regions in the left-lower panel is unstable by gradient
(2 < —HM/M?) and Jeans (1 + wg)Qg < —1) instabilities, while the strip close to the vertical
azis corresponds to the stability window (2.29). Furthermore, the strip around the horizontal axis
given in eq. (3.4) corresponds to the Ghost Condensate. Above this region, in the right-upper panel,

we find standard k-essence.

1 .
+ 5 H(pg +pe)m* = 5 (pq + p)hm

(3.1)

Creminelli, et al 0811.0827
















