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Dark matter galaxies 

 massive clusters


From Millennium Simulation Project


Appearance of clusters is 
the natural consequence of 
nonlinear clustering in a 
CDM model




•  Most massive gravitationally bound objects 
–  10^14 ~ 10^15 M_sun (100 – 1000 galaxies) 
–  Strongest S/N of the lensing signals 
–  DM plays a dominant role to the formation ⇔ for a galaxy, 

baryonic effect is important 
–  Suitable for testing the CDM scenarios on small scales <1Mpc 

•  Astronomically very interesting objects to study 
–  Seen with various wavelengths  (radio, optical, X-ray) 
–  Connection between DM (gravity), hot gas (baryonic matter) 

and galaxies (a tiny part of baryons); 100:10:1 

optical X-ray Radio 



Tiny density fluctuations at z~1000: δm~10^-3
 Gaussian seed density 
fluctuations 

+ 
Spherical collapse model 
(or N-body simulation)


Mass function:  

@cluster mass scales


The mass function can 
be a powerful probe of 
cosmology (e.g. DE) 
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Halo formation at z~0: δm>>1


Gravitational instability
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(gravity⇔ cosmic expansion)
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Angular number counts 
of clusters


Haiman et al 01


Volume effect

Growth effect
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w ≡
pde

ρde

→ρde ∝ (1+ z)3(1+w )   for  w = const.

DE equation of state: w

M>10^14.2 h-1Msun


Note that the right plot uses σ8 
normalization: the same number 
density of clusters at present for 
all models




White 02 
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r200c  ( ρ = 200ρ c ≈ 666ρ m )

€ 

r180b   ( ρ =180ρ m )
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MΔ (< rΔ ) = d3x
r<rΔ
∫  ρ(x) ⇒  n(MΔ )

In a simulation world….




Hu & Kravtsov 01


Gaussian seed density 
fluctuations 

+ 
Spherical collapse model 
(or N-body simulation)


Mass function: n(>M) 

@cluster mass scales

The mass function can 
be a powerful probe of 
cosmology (e.g. DE) 
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⇒ ρ = 200ρ c



•  In a real world, there is no unique definition of cluster 
mass; no clear boundary with the surrounding structures 
–  Need to estimate the mass such that the definition is closer to the 

way used in simulations; e.g. spherical overdensity mass 

•  Have to infer cluster masses (including DM) from the 
observables (optical, X-ray, lensing) 

•  Cluster counting experiment requires the well-calibrated 
mass-observable relation for  cosmology  
–  For a SPT-like survey (4000 deg^2), the mass proxy relation 

needs to be known to a few % accuracy σlnM~0.01  




M_500 estimated from Chandra data  

36 high-z clusters 
49 low-z clusters




 red: Chandra 
 blue: WL (Hoekstra07; CFHT) 


Vikhlinin et al. 07
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YX = MX ×Tgas,X

σlnM~10%




•  Simulation-based predictions:  the appearance of a 
characteristic, universal density profile (Navarro, Frenk & 
White 96, 97; NFW profile) 

From Jing & Suto 99 
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ρNFW(r) =
ρs

(r /rs)(1+ r /rs)
2

Outer: ρ∝r^-3 
Inner:  ρ∝r^-1  

NFW profile  

r 

In addition, halo shape is by nature triaxial (Jing & Suto 01)




•  An NFW profile is specified by 2 parameters 
•  Useful to express the NFW profile in terms of the 

cluster mass and the halo concentration parameter 

•  Can infer the halo mass from the measured halo profile  
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MΔ = 4πr2dr
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∫  ρNFW (r)   : sets the interior mass of ρNFW to MΔ
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ρNFW (r;MΔ ,cΔ )    (note : cΔ ≡ rΔ rs)



•  Dependences of ρNFW(r) on M and c


M


The profile gets steepened 
with increasing c




•  Model-dependent method: the measured lensing signals are 
compared with the model predictions (e.g. NFW model) to 
obtain the best-fit mass parameter 
–  Individual clusters basis vs. statistical basis (cross-

correlations of clusters – background galaxy images) 
–  Systematics inherent in this method 

•  (Less) model-dependent method 
–  Aperture mass-type methods 

•  Combining different estimates/Self-calibration 
–  Combine with X-ray, optical, SZ based estimates 
–  Add the clustering information (b(M))  



• Strong Lensing 
–  Multiple Images 
–  Large Arcs, Ring 
–  Obvious Distortion 

• Weak Lensing 
–  Slight Stretching 
–  Distortion small 
compared to initial shape 
–  Statistical lensing 

These two regime lensing 
are very complementary! 
The combination allows to 
probe the entire region of 
cluster (Broadhurst, MT+05)


 to center 




•  Virial radius of a 
massive cluster 
~Mpc 

•  Subaru FoV 
covers the virial 
region of a 
cluster at z~0.2
27’(3.5Mpc/h) 

34’(4.4Mpc/h) 

θ


Tangential Distortion Profile 

Example: A1689 (z=0.18)


ACS/HST 

more than 100 multiple galaxies 
(Broadhurst et al. 04)




Tangential shear fitting

•  Measured shear profile
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γ+
obs(θi ) = γ+

cluster (θi ) + γ+
LSS(θi ) + ε+(θi ) + sys.

projection effect due to large-scale structures 
along the line of sight


 intrinsic ellipticity


•  Model shear profile
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γ+
model(θi ) = γ+

model(θi;MΔ,cΔ )
cluster


€ 

χ 2 = γ+
obs(θi ) − γ+

model(θi;M,c,...)[ ]Cij−1 γ+
obs(θ j ) − γ+

model(θ j;M,c,...)[ ]
•  A parameter estimation based on the χ2 method
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Cij =
σε
2

Ngi
δij
K + ξ(θi ,θ j )

Covariance is given as the sum of the intrinsic ellipticities and the 
cosmic shear contamination
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1
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ρ3D (r;MΔ ,cΔ )
↓

κ(θ;MΔ ,cΔ ),γ(θ;MΔ ,cΔ )
projection


Okabe, MT, + 09




The degeneracy with halo 
concentration


•  The halo mass 
estimation is 
significantly degenerate 
with halo concentration 

•  Hence, imposing the 
theoretical prior (c~4) 
may cause a significant 
bias (~50%) in the mass 
estimate (Mandelbaum 
et al. 09) 

•  The spherical NFW 
model is a reasonable 
model? 




A209


(the different pixels are correlated)
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shear :  γα  ⇒   2D mass density :κ

Okabe, MT, + 09




Example 2: A2261


Okabe, MT, + 09




Even more stronger 
degeneracy. This 
level degeneracy is 
quite often….




★NFW favored 
△NFW/SIS both not acceptable

☐Both acceptable 
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ρNFW ∝
1

(r /rs)(1+ r /rs)
2

ρSIS ∝
1
r2

•  All clusters: S/N>5 
(typically S/N~10) 

•  The mass estimates 
depend on the model 
assumed for the 
fitting 

•  The virial mass 
determination:  
accuracy 20-30% 

•  MNFW/MSIS~1.19  


Okabe, MT+ 09




NFW model fitting
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σ(MΔ ) /MΔ

€ 

σ(cΔ ) /cΔ

•  A best accuracy in M is 
10-20% when Δ=500-1000 is 
assumed 
–  Over the radii the lensing signals 

have a largest S/N 

•  The concentration parameter is 
most accurately measured for 
the virial definition
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ρNFW(r)

€ 

r

€ 

rs

€ 

rΔ
€ 

MΔ = 4πr2dr
r<rΔ
∫ ρ(r)

cΔ =
rΔ
rs

overdensity: Δ




•  aa


•  The cluster mass distribution is far 
from spherical symmetry, as 
predicted from the collisionless 
CDM model.  

•  Jing & Suto  showed that simulated 
halos can be better described by a 
triaxial halo model than the 
spherical one 

•  Projecting the triaxial halo model 
along the l.o.s. gives the 2D mass 
density:   

A2390

Oguri, MT, + to be submitted 




•  2D shear fitting 

•  6 parameters 
–  Mass, concentration, halo ellipticity 

(2), the centroid position (2) 
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χ 2 = γ+
obs(
 
θ i ) − γ+
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θ i;M,c,...)[ ]Cij−1

     × γ+
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 In this particular case, e_2D=1-b/a=0.59 
 Note that the iso-contours of shear amplitudes are not 
elliptical, needs to solve the 2D Poisson equation.   



Halo ellipticity is not largely degenerate with 
halo mass and concetration parameters 




•  A significant detection of halo 
ellipticity for 18 clusters, at 7σ 
level compared to the spherical 
model 

•  The ellipticity ~0.5 on average 
–  X-ray images show e~0.2 
–  Can exclude MOND? 

•  Remarkable agreement with 
the CDM predictions 

•  Not enough to discriminate the 
model differences




•  Halo center, constrained from 
lensing, is close to the position 
of brightest central galaxy 

•  However, some clusters (about 
10% fraction) show large 
offsets 

•  Imply that the BCG is 
oscillating around the potential 
well for some clusters 

•  Quantify the impact of 
systematic errors in the stacked 
cluster lensing analysis 
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•  The signal is linear (⇔cosmic shear) 
–  Contaminating effects can be significantly reduced 

after stacking (if well behaved): projection effect and 
systematic errors, intrinsic alignment 

•  WL angular resolution improved due to the gain 
in background galaxies 

θ


•  The stacking picks up spherical mass distribution in cluster 
regions, due to the statistical isotropy of the Universe 
–  Easy to compare with models in order to easy cluster mass 

•  The stacking method probes average mass in each richness bins 
–  Clusters need to be binned in each richness bin, based on the pre-

observations (optical, X-ray, SZ, individual lensing itself) 

•  The centroid position of each cluster needs to be a priori known 
•  Lensing studies of individual clusters are still needed 
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Δχ 2 = χSIS
2 − χNFW

2 = 39 and 129 for low -  and high - mass samples, respectively

•  For Subaru data, only ~10 clusters are enough to obtain the high S/N signals

Okabe, MT+09 



NFW 

Cosmic webs 

BCG 

M~10^13 

M~10^14 

Sheldon et al.
09;Johnston et al. 07


Statistics is so 
powerful! 130,000 
groups/clusters
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γ+ 2h (θ)∝b(M)ξm (dAθ)
2-halo term


 cluster scale




•  Most of constraint on halo mass from the 1-halo term 
•  Note that the stacking method still suffers from the mass and 

concentration degeneracy


Johnston et al. 


Number of member gals


M
_2

00



~5% stat. and ~10% sys. errors  
in the mean mass proxy 

Leuththaud et al. 09


X-ray luminosity




•  CC
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γT (θi )
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θM
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θo1

€ 

θo2

Use the measured shear profile at 
radii greater than θM (don’t use the 
shear in the inner region)
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M2D (< θM ) ≈ πθM
2 ζ (θM )Σcr€ 

if M2D (θo1 < θ < θo2) ≈ 0



3D mass: MNFW(<rΔ)

rΔ
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2D Mass = Projected mass along the l.o.s.

M2D (< rΔ ) ~ πrΔ
2 gT (θΔ )

Virial boundary 
 Δ=500


(1.28)
 (1.40)




•  Make the measured shear signal less sensitive to the inner 
region (that is sensitive to halo concentration)  

•  Then can estimate halo mass by fitting the measured profile of 
Y(θ, θ0) to the NFW predictions. The key is this fitting is less 
sensitive to the assumed halo concentration 

•  The price for this is less statistical accuracies and we need to 
measure the profile over a wider range of radii (up to ~4Mpc)


Annular differential surface density (ADSD)
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 θ0: a control radius that needs to be chosen by user 
      the recommendation is about 0.2 of the virial radius




•  Bottom line is 
R0~0.25Mpc/h, 
Rmax~4Mpc are a 
good choice to obtain 
less biased halo mass 
estimate with 
reasonable statistical 
accuracy


R_0=0.25
 0.5
 1Mpc/h


Simulations
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M200b =1014.8h−1Msun

€ 

blue :1014 h−1Msun



Egami et al.: MMT (6.5m, 300 fibers) ~200-300 members/cluster 
for 30 clusters (17 clusters as of May 2009)


  

€ 

γ ~ ∇2(Φ+ Ψ)
v ~ ∇Ψ
or
Mwlvs.Mdyn



•  Shape measurements: but perhaps less demanding compared 
with cosmic shear, because we look for the tangential shear 
components (rather than all the shear fields)  

•  Source redshifts: cluster members have accurate photo-z’s 
•  Dilution effect: including member and foreground, i.e. 

unlensed, galaxies in source galaxy sample causes a dilution 
of the shear signal  
–  The dilution significantly affects the halo concentration estimation 

•  Cluster center uncertainty 
•  Defining a fair good sample of clusters in each mass bins 
•  Need more studies to quantify the power of stacking cluster 

lensing for doing cosmology (MT, Oguri, + in prep.) 




•  Clusters are very powerful probe of cosmology 
–  Need well-calibrated mass proxy relation 
–  Q: a small sample of very massive clusters (e.g. ~100 X-ray clusters in 

Vikhilinin et al. 09) vs. large cluster sample? 

•  The signal is “linear” in the weak lensing limit 
–  Less sensitive to the systematics: intrinsic alignments (if background 

galaxies are separated), shape errors 

•  Individual cluster lensing 
–  The detailed studies are important in order to understand the scatters of 

mass proxy relation 
–  Can constrain mass, profile, halo shape and its centroid position 

•  Stacking cluster lensing: cross-correlation of cluster and 
background galaxy images 
–  Extract “spherical” mass distribution around the cluster 
–  More straightforward to estimate cluster masses in each cluster mass bin 
–  Systematics: cluster centroids; binning of cluster richness 




IPMU international conference (July 2010)
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