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The inflation-building toolkit



Types of inflationary research
Fundamental physics modelling of inflation.

Building inflation models within the context of M-theory/braneworld/
supergravity/etc etc. Eg KKLT, D3/D7, etc.

Inflationary phenomenology. 

Qualitative construction of inflationary scenarios to explore the range of 
phenomenology. Eg chaotic inflation, multi-field models, multiverse, 
reheating.

Deriving observational predictions.

For given scenarios, computing observables such as n and r, and nowadays 
commonly fNL as well.

Constraining inflation with observational data.

Usually CMB data combined with others, either using slow-roll 
approximations or exact numerical calculations.
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1980s: field theory models (e.g. chaotic inflation)
Typically models based on a single scalar field rolling on a flat 
potential. Inflation ends by failure of slow-roll.          
Phenomenology: n and r.

1990s: supersymmetry models (e.g. hybrid inflation)
Multiple fields, aiming to enforce ϕ ≲ MPlanck. Inflation ends by 
symmetry-breaking transition. Phenomenology: n, r, Gμ.

2000s: braneworld models (e.g. KKLT/KKLMMT models)
Branes moving in extra dimensions, falling down `throats’,          
non-standard kinetic terms (DBI etc). Phenomenology: n, r, fNL.

    new perturbation generation mechanisms (e.g. curvaton)
Perturbations acquired by non-inflaton fields and processed. 
Phenomenology: n, isocurvature perturbations, fNL.
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A possible disconnect

Theory: 

Future observations:  

        n probably, r maybe, α maybe, fNL maybe, fiso if we are lucky

non-gaussian

extended

old

chaoticstochastic

unified hybrid

monomial

soft
new

monodromy

DBI

assisted

warm

eternal
D3/D7

branes

throat

tensors

running mass

N-flation

Slow-roll

R2

fluxes

Horava-Lifshitz

thermal

first-order

curvaton

vector

3-form

D-term
F-term

hilltop

PNGB

GUT
reheating

large-field

small-field

modular







How to build inflation models



How to build inflation models

 Start it!



How to build inflation models

 Start it!
 Keeping it going!



How to build inflation models

 Start it!
 Keeping it going!
 End it!



How to build inflation models

 Start it!
 Keeping it going!
 End it!
 Get rid of its cause and 
make normal stuff!



How to build inflation models

 Start it!
 Keeping it going!
 End it!
 Get rid of its cause and 
make normal stuff!
 Make the perturbations!
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Steepening the potential (i.e. violation of slow-roll).
This is measured by the ε slow-roll parameter. Slow-roll is automatically 
violated if potentials have a minimum at V=0.

A second-order phase transition (as in hybrid inflation).
Here an instability in a second field direction causes inflation to end.

A first-order phase transition (leading to bubble formation).
As before, but now the phase transition is a first-order quantum tunnelling, 
promoting formation of bubbles which expand rapidly and coalesce.

Modification of gravity (e.g. braneworld gravity terms becoming 
unimportant).
In this option the potential would not be suitable for inflation in Einstein 
gravity, but may promote inflation in a high-energy modified gravity regime 
(eg Randall-Sundrum models).

There are quite a few choices here:
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From inflation to hot big bang
Decay of the inflaton (reheating/preheating)
One process gets rid of the inflaton and creates normal material. There may 
be interesting consequences if the inflaton decays are incomplete.

Bubble collisions
If inflation ends by bubble nucleation, their subsequent collisions may lead 
to reheating.

A different scalar field comes to dominate and then decays
An example of this is the curvaton scenario. The inflaton presumably decays 
separately but need not produce significant amounts of surviving material.

Black hole reheating
In a variant of the above, black holes are produced whose later Hawking 
evaporation reheats the Universe.

Gravitational particle production
Here particles produced quantum mechanically during the late stages of 
inflation later come to dominate.



From inflation to hot big bang

Amongst these various possibilities, a final question is whether 
the inflaton decays completely away, or whether it survives with 
a residual abundance. 

If it survives, it might become one of the necessary ingredients 
of the standard cosmology, either dark matter or dark energy.
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In general, there is no unique decomposition of the `dark fluid‘         
energy-momentum tensor into `dark matter’ and `dark energy’ components.

Tμνdark matter + Tμνdark energy = Gμν - Tμνbaryon-photon-neutrino 

Eisenstein & Hu 1999
Wasserman 2002

Rubano & Scudellaro 2002
Kunz 2007

If we model the dark sector as cold dark matter and a cosmological 
constant, we can get strong constraints on each. 

But if we model the dark energy equation of state arbitrarily through 
w(a), then we cannot measure Ωdm at all.

If we model the dark energy more generally, e.g. equation of state     
w= w0 + (1-a) wa , we can still measure Ωdm, though not as well.



The dark degeneracy
Tμνdark matter + Tμνdark energy = Gμν - Tμνbaryon-photon-neutrino 

Another powerful result (Kunz 2007) is that for any model of interacting 
dark matter and dark energy, there is always a model of non-interacting 
dark matter and dark energy that gives precisely the same predictions.



Possible context:  Suppose we have a model of dark 
energy that is flexible enough that we may be able to 

do away with the dark matter altogether.  

With Martin Kunz (Sussex), David Parkinson (Sussex), 
Changjun Gao (Beijing)

arXiv:0908.3197, Phys Rev D



Constraining the dark fluid
In this study we consider only kinematic data, which means that the 
equation of state wdark(a) is the only parameter. The dark degeneracy 
applies to structure formation data as well, but the sound speed cs(a) 
then also needs to be constrained.
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Constraining the dark fluid

Martin Kunz,1 Andrew R. Liddle,1 David Parkinson,1 and Changjun Gao2

1Astronomy Centre, University of Sussex, Brighton BN1 9QH, United Kingdom
2The National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China

(Dated: July 11, 2009)

Cosmological observations are normally fit under the assumption that the dark sector can be
decomposed into dark matter and dark energy components. However, as long as the probes remain
purely gravitational, there is no unique decomposition and observations can only constrain a single
dark fluid; this is known as the dark degeneracy. We use observations to directly constrain this
dark fluid in a model-independent way, demonstrating in particular that the data cannot be fit by
a dark fluid with a single constant equation of state. Parameterizing the dark fluid equation of
state by a variety of polynomials in the scale factor a, we use current kinematical data to constrain
the parameters. While the simplest interpretation of the dark fluid remains that it is comprised of
separate dark matter and cosmological constant contributions, our results are expressed in a way
suitable for constraining other model types including unified dark energy/matter scenarios. We
provide a prescription based on orthogonal polynomials to allow our constraints to be imposed on
such models.

PACS numbers: 95.36.x,98.80.-k

I. INTRODUCTION

The standard cosmological model appeals to two sep-
arate dark components — dark matter and dark energy
— and the usual application of observational constraints
places limits on each of these. However, at present these
two components have only been detected through their
gravitational influence, and these measurements do not
provide enough information to permit a unique decom-
position into these components. Rather, it is a model
assumption that the two components are separate. This
point was first made in Refs. [1, 2], and emphasized in
Ref. [3] which extended it to perturbations and to coupled
models, and called it the dark degeneracy. Even though
it holds for structure formation probes of the dark sector
as well, we will focus only on kinematical probes in this
paper to minimize the number of parameters that need
to be considered.

As a simple example, in the standard cosmological
model the redshift evolution of the total dark sector equa-
tion of state

wdark ≡
∑

ρiwi∑
ρi

, (1)

(where ‘i’ runs over the dark components) is given by

wSCM
dark (z) = − 1− Ωm,0

1− Ωm,0 + (Ωm,0 − Ωb,0) (1 + z)3
, (2)

# − 1
1 + 13(1 + z)3/40

. (3)

Here Ωm and Ωb are the total matter density parame-
ter and the baryon density parameter, and the subscript
indicates present value. The second line follows from
inserting the values Ωm,0 # 0.28 and Ωb,0 # 0.046 ob-
tained from current data compilations [REF KOMATSU
WMAP5].

Inclusion of a single dark energy component with this
equation of state evolution would give the same observa-
tional predictions as the standard cosmology. Indeed,
once one allows the dark energy equation of state to
evolve arbitrarily, one cannot say anything from obser-
vations about the dark matter density Ωdm, as its effects
can always be reinterpretted as due to the dark energy.
Analyses which appear to measure Ωdm accurately only
manage to do so because the dark energy parameteriza-
tion adopted is not general enough to be able to mimic
the form of Eq. (2).

This degeneracy is perfect. All we can say in a model-
independent way is that the present total dark sector
density is about 0.95, and that its equation of state is
constrained to evolve in a particular way from an early-
time value at or near zero to arrive at its present value of
wobs

dark(z = 0) # −0.8. Our aim in this paper is to more
precisely quantify these constraints, and present them in
a manner where they can readily be applied to general
dark sector models that might not include a pure dark
matter component.

II. MODELS AND DATA

Having set up this novel framework for analyzing
the dark sector, our analysis procedure is standard and
straightforward.

A. Models

In order to impose constraints on the dark fluid, we
need to employ a parameterization of its equation of
state. Henceforth we drop the subscript ‘dark’, using
w throughout as the total dark sector equation of state.
As we wish to reach high redshift, we parameterize w as a
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wdark ≡
∑

ρiwi∑
ρi

, (1)

(where ‘i’ runs over the dark components) is given by

wSCM
dark (z) = − 1− Ωm,0

1− Ωm,0 + (Ωm,0 − Ωb,0) (1 + z)3
, (2)

# − 1
1 + 13(1 + z)3/40

. (3)

Here Ωm and Ωb are the total matter density parame-
ter and the baryon density parameter, and the subscript
indicates present value. The second line follows from
inserting the values Ωm,0 # 0.28 and Ωb,0 # 0.046 ob-
tained from current data compilations [REF KOMATSU
WMAP5].
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manage to do so because the dark energy parameteriza-
tion adopted is not general enough to be able to mimic
the form of Eq. (2).
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time value at or near zero to arrive at its present value of
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Fig. 9.— From left to right: Systematic dispersion (filled circles)
and RMS around the best fit model (empty circles); The mean,
sample averaged, deviation from the best fit model; The slope of
the Hubble-residual (in magnitudes) versus redshift, dµresidual/dz.
The parameters characterizing the different samples are used to
uncover potential systematic problems.

Fig. 10.— Top: Binned Hubble diagram (bin-size ∆z = 0.01).
Bottom: Binned residuals from the best fitting cosmology.

ing systematic errors on the cosmological parameters are
discussed in section 6.

5.1. Stretch & evolution

With the large statistics at hand one can test the er-
rors associated with the empirical stretch and color cor-
rections. These corrections would become sources of sys-
tematic error if a) different SN populations were to re-
quire different corrections and b) if the SN populations
were to show differences between nearby and distant ob-
jects (either due to selection effects or due to evolution
of the SN environment).

A potential redshift dependence of the correction pa-
rameters can be tested by separately fitting low redshift
and high redshift objects. For this test, a ΛCDM cosmol-
ogy was assumed with ΩM = 0.28 and ΩM = 0.72 (the
values we obtain from the fit of the full sample); however,
the results are rather insensitive to the assumed cosmo-
logical parameters. The obtained fit parameters α and β
are presented in table 4.

The values of β at high and low redshift agree very well,
providing strong constraints on evolution of the color-
correction. Such evolution effects could arise, for exam-
ple, due to a different mix of dust reddening and intrinsic
color at different redshifts. The fact that β agrees so well

6 W.J. Percival et al.

The important term when substituting Equation (12) into

Equation (14) is the expected 2-point galaxy density given by

〈ng(r)ng(r
′)〉 = n̄(r)n̄(r′)

[

1 + ξ(r̂ − r̂′)
]

+n̄(r)δD(r−r
′).(15)

If we analyse the galaxies using a different cosmological model

to the “true” model, the 2-pt galaxy density depends on r̂ and r̂′,

the positions in the true cosmological model that are mapped to

positions r and r
′ when the survey is analysed. Translating from

the correlation function ξ(r̂) to the power spectrum P (k̂) in the
true cosmological model gives

ξ(r̂ − r̂′) =
1

2π2

∫

P (k̂)e−ik.(r̂−r̂′)d3k̂, (16)

which can be substituted into Equation (15). Combining Equations

(12 – 16) shows that the recovered power spectrum is a triple in-

tegral over the true power. If r̂ = r, this reduces to a convolution

of the power spectrum with a “window function” (Feldman et al.

1994). If we now consider a piecewise continuous true power spec-

trum P (k) =
∑

i
Pi[Θ(k)−Θ(k−ki)], whereΘ(k) is the Heav-

iside function, then the triple integral can be written as a linear sum

over Pi, 〈|F (k)|2〉 =
∑

i
WiPi. Because the radial interpretation

changes between actual and measured clustering, spherically aver-

aging the recovered power is no longer equivalent to convolving

the power with the spherical average of the window function. Con-

sequently, the window has to be estimated empirically from mock

catalogues created with different true power spectra and analysed

using a different cosmological model. The empirical window func-

tion can be calculated including both the change in cosmological

model and the survey geometry.

5 ANALYSIS OF THE SDSS AND 2dFGRS

5.1 The observed BAO

Fig. 2 shows the BAO determined from power spectra calculated

for the combined sample of SDSS main galaxies and 2dFGRS

galaxies, the SDSS LRG sample, and the combination of these sam-

ples. The power spectra were calculated forN = 70 band powers
equally spaced in 0.02 < k < 0.3 h Mpc−1 using the method

described in Percival et al. (2007a), assuming a flat Λ cosmology

with Ωm = 0.25. Errors on these data were calculated from 2000
Log-Normal (LN) density fields (Coles & Jones 1991) covering

the combined volume, from which overlapping mock samples were

drawn with number density matched to each galaxy catalogue. The

distribution of recovered power spectra includes the effects of cos-

mic variance and the LN distribution has been shown to be a good

match to the counts in cells on the scales of interest> 10 h−1 Mpc
(Wild 2005), so these catalogues should also match the shot noise

of the data. The catalogues do not include higher order correla-

tions at the correct amplitude for non-linear structure formation,

which are not included in the Log-Normal model. However, the

BAO signal comes predominantly from large-scales that are ex-

pected to be in the linear or quasi-linear regimes, so these effects

should be small. Each catalogue was calculated on a (512)3 grid
covering a (4000 h−1 Mpc)3 cubic volume. The recovered power
spectra from these mock catalogues were fitted with cubic spline×
BAO fits as described in Section 3, and the errors on the BAO were

calculated after dividing by the smooth component of these fits.

We have fitted cubic spline × BAO models to the SDSS and

2dFGRS power spectra using the method of Percival et al. (2007a).

For each catalogue we have calculated the window function of the

survey assuming a flat Λ cosmology with Ωm = 0.25 (using the

Figure 2. BAO in power spectra calculated from (a) the combined SDSS

and 2dFGRS main galaxies, (b) the SDSS DR5 LRG sample, and (c) the

combination of these two samples (solid symbols with 1σ errors). The data
are correlated and the errors are calculated from the diagonal terms in the

covariance matrix. A Standard ΛCDM distance–redshift relation was as-

sumed to calculate the power spectra with Ωm = 0.25, ΩΛ = 0.75. The
power spectra were then fitted with a cubic spline× BAO model, assuming

our fiducial BAO model calculated using CAMB, as described in Section

(3). The BAO component of the fit is shown by the solid line in each panel.

method described in Percival et al. 2007a), and the covariance ma-

trix from the LN catalogues, assuming that the power spectra band

powers are distributed as a multi-variate Gaussian. The power spec-

trum for each sample was then fitted using cubic spline including or

excluding the multiplicative BAO model calculated using CAMB

as described in Section 3 for a flat Λ cosmology with Ωm = 0.25,
Ωbh2 = 0.0223 & h = 0.72. All three samples are significantly
better fit by the models including BAO. For the combined data,

−2∆ lnL = 9.6, for the LRGs−2∆ lnL = 7.4, and for the SDSS
main + 2dFGRS galaxies−2∆ lnL = 5.9 for the likelihood ratios
between best-fit model power spectra with BAO and without BAO.

Including the 2dFGRS data reduces the error on the derived

cosmological parameters by approximately 25% for our combined

analysis of three power spectra. The BAO calculated from just the

SDSS main galaxies and the combination of the SDSS main galax-

ies and the LRGs are shown in Fig. 3. From just the SDSS main

galaxies, −2∆ lnL = 4.5 for the likelihood ratios between best-
fit model power spectra with BAO and without BAO. There is no

change in the significance of the BAO detection from the combined

SDSS LRG and main galaxy sample from including the 2dFGRS

galaxies.

The power spectra plotted in Fig. 2 are clearly not indepen-

dent. Some of the deviations between model and data in the com-

bined catalogue can be traced back to similar distortions in either

the main galaxy or LRG power spectra. The LRGs have a greater

weight when measuring the clustering of the combined sample on

large-scales compared with the lower redshift galaxies, while the

low redshift galaxies have a stronger weight when measuring the

clustering on smaller scales. The combined sample includes addi-

c© 0000 RAS, MNRAS 000, 000–000
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Here are the best fits for 
different parameterizations.

TABLE I: Parameters (of the dark sector equation of state)
and best-fit chi-squared for our various models. The con-
strained models force w(a = 0) = 0, and the doubly-
constrained ones additionally dw/da|a=0 = 0.

Model Dark sector χ2
min

parameters

ΛCDM 1 311.9

Constant w 1 391.3

Linear (CPL) 2 312.1

Constrained linear 1 320.5

Quadratic 3 309.8

Constrained quadratic 2 311.9

Doubly-constrained quadratic 1 313.5

Cubic 4 309.6

Constrained cubic 3 311.1

Doubly-constrained cubic 2 311.5

III. RESULTS

Table I shows the number of adjustable parameters and
best-fit chi-squared for most models, including ΛCDM for
comparison. The total number of data points is 313 (308
SN-Ia, 2 BAO, 2 CMB and 1 from the SHOES project),
but correlations between the data points make it difficult
to state the number of independent data points, and so
the number of degrees of freedom. We can say that the
number of degrees of freedom is, at most, 311 minus the
number of dark sector parameters, meaning that the data
is an acceptable fit to all the models, except the constant
w model, if the correlations are small.

The corresponding w(a) curves of the best-fitting ver-
sion of each model are shown in Fig. 1. The immediate
conclusions from these are as follows:

1. ΛCDM, as expected, does a good job of fitting the
data, bettered only by other models with more dark
sector parameters. For our data the best-fit Ωm is
0.26± 0.02. This agrees well with the result of Ko-
matsu et al. [6], with somewhat larger uncertainty
as less data is being used.

2. Even the best-fit version of the constant w model
is a very poor fit. The dark sector has not had a
constant equation of state throughout its evolution.

3. The full four-parameter cubic does not significantly
improve the fit over the three-parameter quadratic,
indicating that three-parameter models saturate
the constraining power of the data.

4. All the models have w(a = 0) at or very close to
zero, enforced entirely by the data. This indicates
that the full phenomenology can be captured using
the constrained versions of the expansion, reducing
the variable parameter set by at least one.

5. The doubly-constrained quadratic (i.e. simply
w(a) = w0a2) gives a tolerable one-parameter fit to
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FIG. 2: Parameter constraints on the linear (CPL) parame-
terization. The constrained models lie on the line w1 = −w0,
shown as the (blue) line on the w0, w1 plot.

the data, though not quite as good as the ΛCDM
fit. By contrast, the single-parameter constrained
linear fit is a poor fit to the data when compared to
the ΛCDM fit which has the same number of pa-
rameters (though the general CPL model can ac-
ceptably fit it by overshooting to w > 0 at early
times).

6. In terms of giving good fits to the data for econom-
ical numbers of parameters, apart from ΛCDM the
two-parameter constrained quadratic and doubly-
constrained cubic fits are the most appealing mod-
els.

More relevant than the best-fit parameters are the
ranges of parameter values permitted by the data. As



Constraining the dark fluid
The data alone enforce that 
w=0 at early times, i.e.   
dark matter behaviour.    
This motivates enforcing this 
condition in the models.

Here are the best fits for 
different parameterizations.

TABLE I: Parameters (of the dark sector equation of state)
and best-fit chi-squared for our various models. The con-
strained models force w(a = 0) = 0, and the doubly-
constrained ones additionally dw/da|a=0 = 0.

Model Dark sector χ2
min

parameters

ΛCDM 1 311.9

Constant w 1 391.3

Linear (CPL) 2 312.1

Constrained linear 1 320.5

Quadratic 3 309.8

Constrained quadratic 2 311.9

Doubly-constrained quadratic 1 313.5

Cubic 4 309.6

Constrained cubic 3 311.1

Doubly-constrained cubic 2 311.5

III. RESULTS

Table I shows the number of adjustable parameters and
best-fit chi-squared for most models, including ΛCDM for
comparison. The total number of data points is 313 (308
SN-Ia, 2 BAO, 2 CMB and 1 from the SHOES project),
but correlations between the data points make it difficult
to state the number of independent data points, and so
the number of degrees of freedom. We can say that the
number of degrees of freedom is, at most, 311 minus the
number of dark sector parameters, meaning that the data
is an acceptable fit to all the models, except the constant
w model, if the correlations are small.

The corresponding w(a) curves of the best-fitting ver-
sion of each model are shown in Fig. 1. The immediate
conclusions from these are as follows:

1. ΛCDM, as expected, does a good job of fitting the
data, bettered only by other models with more dark
sector parameters. For our data the best-fit Ωm is
0.26± 0.02. This agrees well with the result of Ko-
matsu et al. [6], with somewhat larger uncertainty
as less data is being used.

2. Even the best-fit version of the constant w model
is a very poor fit. The dark sector has not had a
constant equation of state throughout its evolution.

3. The full four-parameter cubic does not significantly
improve the fit over the three-parameter quadratic,
indicating that three-parameter models saturate
the constraining power of the data.

4. All the models have w(a = 0) at or very close to
zero, enforced entirely by the data. This indicates
that the full phenomenology can be captured using
the constrained versions of the expansion, reducing
the variable parameter set by at least one.

5. The doubly-constrained quadratic (i.e. simply
w(a) = w0a2) gives a tolerable one-parameter fit to

! !"# !"$ !"% !"& '
!'"#

!'

!!"&

!!"%

!!"$

!!"#

!

!"#

(

)

*

*

+,-.

,/012(02

,3+

,3+*4,/0125(607-8

9:(-

9:(-*4,/0125(607-8

9:(-*4-;+"*,/0125"8

,:;6,

,:;6,*4,/0125(607-8

,:;6,*4-;+"*,/0125"8

FIG. 1: The best-fit w(a) for our various models. Note that
the approach to w = 0 at a = 0 is determined entirely by the
data in the unconstrained cases, while being enforced in the
constrained models.

!!"< !!"%= !!"% !!"==

!"% !"%= !"<
)
'

)
'

)
!

!!"< !!"%= !!"% !!"==

!"%

!"%=

!"<

FIG. 2: Parameter constraints on the linear (CPL) parame-
terization. The constrained models lie on the line w1 = −w0,
shown as the (blue) line on the w0, w1 plot.

the data, though not quite as good as the ΛCDM
fit. By contrast, the single-parameter constrained
linear fit is a poor fit to the data when compared to
the ΛCDM fit which has the same number of pa-
rameters (though the general CPL model can ac-
ceptably fit it by overshooting to w > 0 at early
times).

6. In terms of giving good fits to the data for econom-
ical numbers of parameters, apart from ΛCDM the
two-parameter constrained quadratic and doubly-
constrained cubic fits are the most appealing mod-
els.

More relevant than the best-fit parameters are the
ranges of parameter values permitted by the data. As



TABLE I: Parameters (of the dark sector equation of state)
and best-fit chi-squared for our various models. The con-
strained models force w(a = 0) = 0, and the doubly-
constrained ones additionally dw/da|a=0 = 0.

Model Dark sector χ2
min

parameters

ΛCDM 1 311.9

Constant w 1 391.3

Linear (CPL) 2 312.1

Constrained linear 1 320.5

Quadratic 3 309.8

Constrained quadratic 2 311.9

Doubly-constrained quadratic 1 313.5

Cubic 4 309.6

Constrained cubic 3 311.1

Doubly-constrained cubic 2 311.5

III. RESULTS

Table I shows the number of adjustable parameters and
best-fit chi-squared for most models, including ΛCDM for
comparison. The total number of data points is 313 (308
SN-Ia, 2 BAO, 2 CMB and 1 from the SHOES project),
but correlations between the data points make it difficult
to state the number of independent data points, and so
the number of degrees of freedom. We can say that the
number of degrees of freedom is, at most, 311 minus the
number of dark sector parameters, meaning that the data
is an acceptable fit to all the models, except the constant
w model, if the correlations are small.

The corresponding w(a) curves of the best-fitting ver-
sion of each model are shown in Fig. 1. The immediate
conclusions from these are as follows:

1. ΛCDM, as expected, does a good job of fitting the
data, bettered only by other models with more dark
sector parameters. For our data the best-fit Ωm is
0.26± 0.02. This agrees well with the result of Ko-
matsu et al. [6], with somewhat larger uncertainty
as less data is being used.

2. Even the best-fit version of the constant w model
is a very poor fit. The dark sector has not had a
constant equation of state throughout its evolution.

3. The full four-parameter cubic does not significantly
improve the fit over the three-parameter quadratic,
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times).
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the variable parameter set by at least one.

5. The doubly-constrained quadratic (i.e. simply
w(a) = w0a2) gives a tolerable one-parameter fit to
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the data, though not quite as good as the ΛCDM
fit. By contrast, the single-parameter constrained
linear fit is a poor fit to the data when compared to
the ΛCDM fit which has the same number of pa-
rameters (though the general CPL model can ac-
ceptably fit it by overshooting to w > 0 at early
times).

6. In terms of giving good fits to the data for econom-
ical numbers of parameters, apart from ΛCDM the
two-parameter constrained quadratic and doubly-
constrained cubic fits are the most appealing mod-
els.

More relevant than the best-fit parameters are the
ranges of parameter values permitted by the data. As



TABLE I: Parameters (of the dark sector equation of state)
and best-fit chi-squared for our various models. The con-
strained models force w(a = 0) = 0, and the doubly-
constrained ones additionally dw/da|a=0 = 0.

Model Dark sector χ2
min

parameters

ΛCDM 1 311.9
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Linear (CPL) 2 312.1
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Quadratic 3 309.8

Constrained quadratic 2 311.9

Doubly-constrained quadratic 1 313.5

Cubic 4 309.6

Constrained cubic 3 311.1

Doubly-constrained cubic 2 311.5

III. RESULTS

Table I shows the number of adjustable parameters and
best-fit chi-squared for most models, including ΛCDM for
comparison. The total number of data points is 313 (308
SN-Ia, 2 BAO, 2 CMB and 1 from the SHOES project),
but correlations between the data points make it difficult
to state the number of independent data points, and so
the number of degrees of freedom. We can say that the
number of degrees of freedom is, at most, 311 minus the
number of dark sector parameters, meaning that the data
is an acceptable fit to all the models, except the constant
w model, if the correlations are small.

The corresponding w(a) curves of the best-fitting ver-
sion of each model are shown in Fig. 1. The immediate
conclusions from these are as follows:

1. ΛCDM, as expected, does a good job of fitting the
data, bettered only by other models with more dark
sector parameters. For our data the best-fit Ωm is
0.26± 0.02. This agrees well with the result of Ko-
matsu et al. [6], with somewhat larger uncertainty
as less data is being used.

2. Even the best-fit version of the constant w model
is a very poor fit. The dark sector has not had a
constant equation of state throughout its evolution.

3. The full four-parameter cubic does not significantly
improve the fit over the three-parameter quadratic,
indicating that three-parameter models saturate
the constraining power of the data.

4. All the models have w(a = 0) at or very close to
zero, enforced entirely by the data. This indicates
that the full phenomenology can be captured using
the constrained versions of the expansion, reducing
the variable parameter set by at least one.

5. The doubly-constrained quadratic (i.e. simply
w(a) = w0a2) gives a tolerable one-parameter fit to
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fit. By contrast, the single-parameter constrained
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the ΛCDM fit which has the same number of pa-
rameters (though the general CPL model can ac-
ceptably fit it by overshooting to w > 0 at early
times).
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two-parameter constrained quadratic and doubly-
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the ΛCDM fit which has the same number of pa-
rameters (though the general CPL model can ac-
ceptably fit it by overshooting to w > 0 at early
times).

6. In terms of giving good fits to the data for econom-
ical numbers of parameters, apart from ΛCDM the
two-parameter constrained quadratic and doubly-
constrained cubic fits are the most appealing mod-
els.

More relevant than the best-fit parameters are the
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all constant w models are ruled out, we show in Figs. 2
and 3 the constraints on the parameters of the CPL and
quadratic parameterizations, and in Fig. 4 we show the
constraints on the constrained quadratic model, which
forces w(a = 0) = 0.

For illustrative purposes, Fig. 5 shows 400 quadratic
w(a) curves drawn randomly from the Markov chain.
They are shaded so that the likelihood increases from
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FIG. 5: An illustration of the form of the best fitting w(a)
curves for the quadratic case. A sparse sampling of 400 chain
elements, colour coded by likelihood with the red (lighter)
shading the highest, is shown.

blue (darker) to red (lighter). We can see that the high-
redshift region near a = 0 is strongly constrained and
requires w ≈ 0, while the value of the total equation
of state parameter today, w0 = w(a = 1), is only very
weakly constrained by the data sets used in this work.2
Due to the integrated nature of the distance constraints
on w, curves that oscillate around the best-fit incur only
a small penalty. This becomes more problematic when
going to higher order in power law expansions since then
more oscillations become possible. As the oscillations
have to average out, the expansion parameters are highly
correlated and not really independent, which can already
be seen for w0 and w1 in the quadratic case in Fig. 3.

We also carried out a different analysis where the equa-
tion of state w is allowed to take different values in binned
regions of scale factor a, for simplicity taken to be lin-
early spaced with 10 or 20 bins. A Principal Component
Analysis showed that three modes were well measured
(σ < 0.1), supporting the conclusions above. This analy-
sis also showed that the best measured mode was peaked
in the highest-redshift bin.

IV. CONCLUSIONS

Due to the dark degeneracy, there is no unique split
into dark matter and dark energy. For this reason, we
considered in this paper the total dark sector equation of
state. We parameterized it with polynomial expansions
in the scale factor a and used type Ia supernovae, baryon

2 As we were completing this work, Mortonson et al. [13] arXived
a paper considering this specific point in much more detail. This
point had also previously been noted in Ref. [14].
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requires w ≈ 0, while the value of the total equation
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a small penalty. This becomes more problematic when
going to higher order in power law expansions since then
more oscillations become possible. As the oscillations
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Analysis showed that three modes were well measured
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Due to the dark degeneracy, there is no unique split
into dark matter and dark energy. For this reason, we
considered in this paper the total dark sector equation of
state. We parameterized it with polynomial expansions
in the scale factor a and used type Ia supernovae, baryon
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Dark fluid conclusions
At present there is no unique decomposition of the dark 
fluid into components, i.e. no model-independent 
determination of the dark matter or dark energy densities.

In order to test unified dark sector scenarios, a 
generalized data analysis is required which does not 
assume this split.

This does show that the dark sector must behave as dark 
matter at early epochs.

Despite the above, the standard assumption of separate 
dark matter and cosmological constant components is the 
simplest satisfactory explanation of present data.




