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The inflation-building toolkit




Types of inflationary research

B Fundamental physics modelling of inflation.

Building inflation models within the context of M-theory/braneworld/
supergravity/etc etc. Eg KKLT, D3/D7, etc.

B Inflationary phenomenology.

Qualitative construction of inflationary scenarios to explore the range of

phenomenology. Eg chaotic inflation, multi-field models, multiverse,
‘reheating. |
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potential. Inflation ends by failure of slow-roll.
Phenomenology: n and r.

B 7990s: supersymmetry models (e.g. hybrid inflation)

Multiple fields, aiming to enforce @ = Mpanck. Inflation ends by
- symmetry-breaking transition. Phenomenology: n, r, Gu.
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Fundamental physics models of inflation

m 7980s: field theory models (e.g. chaotic inflation)

Typically models based on a single scalar field rolling on a flat
potential. Inflation ends by failure of slow-roll.
Phenomenology: n and r.

B 7990s: supersymmetry models (e.g. hybrid inflation)

Multiple fields, aiming to enforce @ = Mpanck. Inflation ends by
symmetry-breaking transition. Phenomenology: n, r, Gp.
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Future observations:

n probably, r maybe, @ maybe, fnL maybe, fiso if we are lucky
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Start It

How does inflation start in the first place?
There are various approaches in the literature:

®m Don't ask; hope no one else does. This is the commonest
strategy.

®m  Assume that the pre-inflationary Universe samples possible
initial conditions widely enough that some regions are
- suitable to start inflation.
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How does inflation start in the first place?
There are various approaches in the literature:

®m Don't ask; hope no one else does. This is the commonest
strategy.

®m  Assume that the pre-inflationary Universe samples possible
initial conditions widely enough that some regions are
suitable to start mflatlon
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Start It

How does inflation start in the first place?
There are various approaches in the literature:

®m Don't ask; hope no one else does. This is the commonest
strategy.

®m  Assume that the pre-inflationary Universe samples possible
initial conditions widely enough that some regions are
suitable to start inflation.
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Sustain It

Almost also inflation models invoke scalar fields to drive inflation,
though in some cases the fundamental origin of these scalar fields
may be geometrical (eg size of an extra dimension).

Occasionally people dabble with vector fields as an alternative,
and more recently with 3-form fields.

A scenario may invoke

multiple scalar fields, in .
which case the term
“inflaton” might refer to the
position on the particular
trajectory taken in our
region of the Universe.
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There are quite a few choices here:

B Steepening the potential (i.e. violation of slow-roll).

This is measured by the € slow-roll parameter. Slow-roll is automatically
violated if potentials have a minimum at V=0.

m A second-order phase transition (as in hybrid inflation).

Here an instability in a second field direction causes inflation to end.
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There are quite a few choices here:

B Steepening the potential (i.e. violation of slow-roll).

This is measured by the € slow-roll parameter. Slow-roll is automatically
violated if potentials have a minimum at V=0.

m A second-order phase transition (as in hybrid inflation).

Here an instability in a second field direction causes inflation to end.
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Stop It
There are quite a few choices here:

B Steepening the potential (i.e. violation of slow-roll).

This is measured by the € slow-roll parameter. Slow-roll is automatically
violated if potentials have a minimum at V=0.

m A second-order phase transition (as in hybrid inflation).
Here an instability in a second field direction causes inflation to end.
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There are quite a few choices here:

B Steepening the potential (i.e. violation of slow-roll).

This is measured by the € slow-roll parameter. Slow-roll is automatically
violated if potentials have a minimum at V=0.

m A second-order phase transition (as in hybrid inflation).

Here an instability in a second field direction causes inflation to end.
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Stop It
There are quite a few choices here:

B Steepening the potential (i.e. violation of slow-roll).

This is measured by the € slow-roll parameter. Slow-roll is automatically
violated if potentials have a minimum at V=0.

m A second-order phase transition (as in hybrid inflation).

Here an instability in a second field direction causes inflation to end.

- m A first-order phase transition (leading to bubble formation)




From inflation to hot big bang

At the end of inflation we still have scalar fields, which we don’t
want, and have to produce the material of the Hot Big Bang.
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®m Decay of the inflaton (reheating/preheating)
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m Bubble collisions

finf

ation ends by bubble nucleation, their subsequent collisions may lead

to reheating.
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From inflation to hot big bang

Amongst these various possibilities, a final question is whether

the inflaton decays completely away, or whether it survives with
a residual abundance.

If it survives, it might become one of the necessary ingredients
of the standard cosmology, elther dark matter or dark EDCIBY..
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The Standard Cosmological Model

This model postulates that the Universe contains five
different materials: baryons (including electrons), photons,
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This model postulates that the Universe contains five
different materials: baryons (including electrons), photons,
neutrinos, dark matter and dark energy.

Guv =2 Tuvbaryon—photon—neutrino + Tuvdark matter Tuvdark energy




The dark degeneracy

Tuvdark matter Tuvdark energy — Guv _ Tuvbaryon—photon—neutrino

In general, there is no unique decomposition of the “dark fluid’
energy-momentum tensor into “dark matter’ and “dark energy’ components.

Eisenstein & Hu 1999
Woasserman 2002
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The dark degeneracy

Tuvdark matter Tuvdark energy — Guv _ Tuvbaryon—photon—neutrino

Another powerful result (Kunz 2007) is that for any model of interacting
dark matter and dark energy, there is always a model of non-interacting
dark matter and dark energy that glves preC|se|y the same predlctlons
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Possible context: Suppose we have a model of dark
energy that is flexible enough that we may be able to
do away with the dark matter altogether.

o,

With IMartin: Kunz (Sussex), David Parkinson (SUssex),
Curupr Gao (Beljing,
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Constraining the dark fluid

In this study we consider only kinematic data, which means that the
equation of state wdark(a) is the only parameter. The dark degeneracy
applies to structure formation data as well, but the sound speed cs(a)

then also needs to be constrained.
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In the standard cosmological model, we have
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In the standard cosmological model, we have
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Constraining the dark fluid

We simply parametrize the complete dark fluid by expanding wdar(a),
for instance as a Taylor series, up to cubic order, possibly with some
low derivatives set to zero (the “constrained’ expansions).
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We simply parametrize the complete dark fluid by expanding wdar(a),
for instance as a Taylor series, up to cubic order, possibly with some
low derivatives set to zero (the “constrained’ expansions).

Data used: Supernova luminosity distances (Union sample, 307 SN)
Cosmic microwave background peak positions (WMAP5)
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Constraining the dark fluid

We simply parametrize the complete dark fluid by expanding wdar(a),
for instance as a Taylor series, up to cubic order, possibly with some
low derivatives set to zero (the “constrained” expansions).

Data used: Supernova luminosity distances (Union sample, 307 SN)
Cosmic microwave background peak positions (WMAP5)

Baryon acoustic oscillation peak positions (SDSS+2dFGRS)
Hubble parameter (SHOES)
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Constraining the dark fluid

—cpl

- — - cpl (constrained)
quad

- = = quad (constrained)
quad (dbl. constr.)
cubic

- = = cubic (constrained)
cubic (dbl. constr.)

Here are the best fits for
different parameterizations.



Constraining the dark fluid

The data alone enforce that
w=0 at early times, i.e.

dark matter behaviour.

This motivates enforcing this
condition in the models.
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Constraining the dark fluid

0.2

The data alone enforce that

w=0 at early times, i.e.

dark matter behaviour.

This motivates enforcing this
condition in the models.

lcdm

[ constant

| —cpl

|| — = = cpl (constrained)

[ quad

- = = = quad (constrained)
' quad (dbl. constr.)
i cubic

391.3 .| = = = cubic (constrained)
312.1 I cubic (dbl. constr.)
320.5 —ha
309.8
311.9

;’3;32 Here are the best fits for

311.1 different parameterizations.
311.5

Model Dark sector  x2.,
parameters

ACDM 1 311.9
Constant w
Linear (CPL)
Constrained linear
Quadratic

Constrained quadratic

0.2 0.4

Doubly-constrained quadratic
Cubic

Constrained cubic

N W bk = N W R N

Doubly-constrained cubic
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0.2

The data alone enforce that
w=0 at early times, i.e.

dark matter behaviour.

This motivates enforcing this
condition in the models.

lcdm

[ constant
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|| — = = cpl (constrained)

i quad
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' quad (dbl. constr.)
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' cubic (dbl. constr.)

Model Dark sector  x2.,
parameters

ACDM 1 311.9
Constant—w

Linear (CPL)
Constrained linear
Quadratic
Constrained quadratic

0.2 0.4

Doubly-constrained quadratic
Cubic

Constrained cubic

Here are the best fits for
different parameterizations.

N W bk = N W~ N H

Doubly-constrained cubic




Constraining the dark fluid

Fit spread for
quadratic
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®m At present there is no unique decomposition of the dark
fluid into components, i.e. no model-independent
determination of the dark matter or dark energy densities.
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®m At present there is no unique decomposition of the dark
fluid into components, i.e. no model-independent
determination of the dark matter or dark energy densities.

® In order to test unified dark sector scenarios, a
generalized data analysis is required which does not

assume this split.
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Dark fluid conclusions

®m At present there is no unique decomposition of the dark
fluid into components, i.e. no model-independent
determination of the dark matter or dark energy densities.

® In order to test unified dark sector scenarios, a
generalized data analysis is required which does not
assume this split.
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Dark fluid conclusions

®m At present there is no unique decomposition of the dark
fluid into components, i.e. no model-independent
determination of the dark matter or dark energy densities.

® In order to test unified dark sector scenarios, a
generalized data analysis is required which does not
assume this split.
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