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Fig. 5.— Constraint on three representative inflation models
whose potential is positively curved, V ′′ > 0 (§ 3.3). The con-
tours show the 68% and 95% CL derived from WMAP+BAO+SN.
(Top) The monomial, chaotic-type potential, V (φ) ∝ φα (Linde
1983), with α = 4 (solid) and α = 2 (dashed) for single-field
models, and α = 2 for multi-axion field models with β = 1/2
(Easther & McAllister 2006) (dotted). The symbols show the pre-
dictions from each of these models with the number of e-folds of
inflation equal to 50 and 60. The λφ4 potential is excluded convinc-
ingly, the m2φ2 single-field model lies outside of (at the boundary
of) the 68% region for N = 50 (60), and the m2φ2 multi-axion
model with N = 50 lies outside of the 95% region. (Middle)
The exponential potential, V (φ) ∝ exp[−(φ/Mpl)

p

2/p], which
leads to a power-law inflation, a(t) ∝ tp (Abbott & Wise 1984;
Lucchin & Matarrese 1985). All models but p ∼ 120 are outside
of the 68% region. The models with p < 60 are excluded at more
than 99% CL, and those with p < 70 are outside of the 95% region.
For multi-field models these limits can be translated into the num-
ber of fields as p → npi, where pi is the p-parameter of each field
(Liddle et al. 1998). The data favour n ∼ 120/pi fields. (Bottom)
The hybrid-type potential, V (φ) = V0 + (1/2)m2φ2 = V0(1 + φ̃2),
where φ̃ ≡ mφ/(2V0)1/2 (Linde 1994). The models with φ̃ < 2/3
drive inflation by the vacuum energy term, V0, and are disfavoured
at more than 95% CL, while those with φ̃ > 1 drive inflation by
the quadratic term, and are similar to the chaotic type (the left
panel with α = 2). The transition regime, 2/3 < φ̃ < 1 are outside
of the 68% region, but still within the 95% region.
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We find that p < 60 is excluded at more than 99%
CL, 60 < p < 70 is within the 99% region but
outside of the 95% region, and p > 70 is within the
95% region. The models with p ∼ 120 lie on the
boundary of the 68% region, but other parameters
are not within the 68% CL. This model can be
thought of as a single-field inflation with p $ 1, or
multi-field inflation with n fields, each having pi ∼
1 or even pi < 1 (assisted inflation; Liddle et al.
1998). In this context, therefore, one can translate
the above limits on p into the limits on the number
of fields. The data favour n ∼ 120/pi fields.

(c) For this model we can divide the parameter space
into 3 regions, depending upon the value of φ̃ that
corresponds to the field value when the wavelength
of fluctuations that we probe with WMAP left the
horizon. When φ̃ % 1, the potential is dominated
by a constant term, which we call “Flat Potential
Regime.” When φ̃ $ 1, the potential is indistin-
guishable from the chaotic-type (model (a)) with
α = 2. We call this region “Chaotic Inflation-like
Regime.” When φ̃ ∼ 1, the model shows a tran-
sitional behaviour, and thus we call it “Transition
Regime.” We find that the flat potential regime
with φ̃ ! 2/3 lies outside of the 95% region. The
transition regime with 2/3 ! φ̃ ! 1 is within the
95% region, but outside of the 68% region. Finally,
the chaotic-like regime contains the 68% region.
Since inflation in this model ends by the second
field whose dynamics depends on other parameters,
there is no constraint from the number of e-folds.

These examples show that the WMAP 5-year data,
combined with the distance information from BAO and
SN, begin to disfavour a number of popular inflation
models.

3.4. Curvature of the observable universe

3.4.1. Motivation

The flatness of the observable universe is one of the
predictions of conventional inflation models. How much
curvature can we expect from inflation? The common
view is that inflation naturally produces the spatial cur-
vature parameter, Ωk, on the order of the magnitude of
quantum fluctuations, i.e., Ωk ∼ 10−5. On the other
hand, the current limit on Ωk is of order 10−2; thus, the
current data are not capable of reaching the level of Ωk

that is predicted by the common view.
Would a detection of Ωk rule out inflation? It is possi-

ble that the value of Ωk is just below our current detec-
tion limit, even within the context of inflation: inflation
may not have lasted for so long, and the curvature radius
of our universe may just be large enough for us not to
see the evidence for curvature within our measurement
accuracy, yet. While this sounds like fine-tuning, it is a
possibility.

This is something we can test by constraining Ωk bet-
ter. There is also a revived (and growing) interest in
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supergravity/etc etc. Eg KKLT, D3/D7, etc.

Inflationary phenomenology. 

Qualitative construction of inflationary scenarios to explore the range of 
phenomenology. Eg chaotic inflation, multi-field models, multiverse, 
reheating, curvaton.

Deriving observational predictions.

For given scenarios, computing observables such as n and r, and nowadays 
commonly fNL as well.

Constraining inflation with observational data.

Usually CMB data combined with others, either using slow-roll 
approximations or exact numerical calculations.
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The Key Tests of Inflation

The simplest models of inflation predict nearly
power-law spectra of adiabatic, gaussian scalar
and tensor perturbations in their growing mode
in a spatially-flat Universe.

This statement lists the key predictions of inflation that we would like to

test. However some tests are more powerful than others, because some

are predictions only of the simplest inflationary models.

Test: a useful test of a model is one which, if failed, leads to rejection of that model.

Supporting evidence is the verification of a prediction which, while not

generic, is seen as indicative that the model is correct.
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In the simplest inflation models (eg a single scalar field 
rolling on a nearly flat potential) these are all we need.

The most basic observables that can be predicted from a 
given inflation model are
      n:  Spectral index of density perturbations.
      r:   Ratio of gravitational waves to density perturbations.
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Lucchin & Matarrese 1985). All models but p ∼ 120 are outside
of the 68% region. The models with p < 60 are excluded at more
than 99% CL, and those with p < 70 are outside of the 95% region.
For multi-field models these limits can be translated into the num-
ber of fields as p → npi, where pi is the p-parameter of each field
(Liddle et al. 1998). The data favour n ∼ 120/pi fields. (Bottom)
The hybrid-type potential, V (φ) = V0 + (1/2)m2φ2 = V0(1 + φ̃2),
where φ̃ ≡ mφ/(2V0)1/2 (Linde 1994). The models with φ̃ < 2/3
drive inflation by the vacuum energy term, V0, and are disfavoured
at more than 95% CL, while those with φ̃ > 1 drive inflation by
the quadratic term, and are similar to the chaotic type (the left
panel with α = 2). The transition regime, 2/3 < φ̃ < 1 are outside
of the 68% region, but still within the 95% region.
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We find that p < 60 is excluded at more than 99%
CL, 60 < p < 70 is within the 99% region but
outside of the 95% region, and p > 70 is within the
95% region. The models with p ∼ 120 lie on the
boundary of the 68% region, but other parameters
are not within the 68% CL. This model can be
thought of as a single-field inflation with p $ 1, or
multi-field inflation with n fields, each having pi ∼
1 or even pi < 1 (assisted inflation; Liddle et al.
1998). In this context, therefore, one can translate
the above limits on p into the limits on the number
of fields. The data favour n ∼ 120/pi fields.

(c) For this model we can divide the parameter space
into 3 regions, depending upon the value of φ̃ that
corresponds to the field value when the wavelength
of fluctuations that we probe with WMAP left the
horizon. When φ̃ % 1, the potential is dominated
by a constant term, which we call “Flat Potential
Regime.” When φ̃ $ 1, the potential is indistin-
guishable from the chaotic-type (model (a)) with
α = 2. We call this region “Chaotic Inflation-like
Regime.” When φ̃ ∼ 1, the model shows a tran-
sitional behaviour, and thus we call it “Transition
Regime.” We find that the flat potential regime
with φ̃ ! 2/3 lies outside of the 95% region. The
transition regime with 2/3 ! φ̃ ! 1 is within the
95% region, but outside of the 68% region. Finally,
the chaotic-like regime contains the 68% region.
Since inflation in this model ends by the second
field whose dynamics depends on other parameters,
there is no constraint from the number of e-folds.

These examples show that the WMAP 5-year data,
combined with the distance information from BAO and
SN, begin to disfavour a number of popular inflation
models.
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quantum fluctuations, i.e., Ωk ∼ 10−5. On the other
hand, the current limit on Ωk is of order 10−2; thus, the
current data are not capable of reaching the level of Ωk
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given inflation model are
      n:  Spectral index of density perturbations.
      r:   Ratio of gravitational waves to density perturbations.

Scale dependence of the spectral index n, known as 
the running α.

Significant non-gaussianity.

Isocurvature density perturbations  (perturbations in 
the relative amount of different materials, leaving the 
total density unperturbed).

But more complicated inflation models may produce further 
observables, including
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Minimally-parametric power spectrum reconstruction and the evidence for a red tilt 10

Figure 3. Primordial power spectrum P (k) (left) and spectral index ns(k) (right)
reconstructed from WMAPext for the CV-selected optimal penalty. A deviation
from scale invariance consistent with a red-tilted power law form is clearly visible.
The dashed line corresponds to a scale invariant power spectrum: the reconstructed
spectrum is consistent with a scale independent spectral slope and a red tilt.
Throughout, the units of k are Mpc−1.

Figure 4. Primordial power spectrum P (k) reconstructed from WMAP3 (left) and
WMAPext (right) data, without CV penalty. While one may be tempted to interpret
the reconstructed power spectrum as having features, CV shows that they are not
significant, and the recovered optimal P (k) is that shown in Figs. 2 and 3. The units
of k are Mpc−1.

Table 2. Effect on cosmological parameters of the extra freedom in the primordial
power spectrum for WMAPext data, in the same format as Table 1.

WMAPext PL run spline λopt,ext spline λ = 0

Ωbh
2 0.0223± 0.00073 0.021 ± 0.001 0.0221± 0.00075 0.018± 0.0011

Ωch
2 0.103 ± 0.0081 0.114 ± 0.0098 0.106± 0.0071 0.15 ± 0.017

h 0.739± 0.031 0.68 ± 0.04 0.733 ± 0.033 0.55 ± 0.056
σ8 0.739± 0.049 0.77 ± 0.05 0.764 ± 0.042 0.92 ± 0.056

Verde-Peiris 2008
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But is that the right question to ask?



Levels of Bayesian inference



Levels of Bayesian inference
Parameter 
Estimation



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Parameter 
Estimation



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

Parameter 
Estimation



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

I can do this by 
computing the Bayesian 
Evidence. I can then do 
parameter estimation 
using the best model.



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Multi-model 
Inference

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

I can do this by 
computing the Bayesian 
Evidence. I can then do 
parameter estimation 
using the best model.



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Multi-model 
Inference

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

I can do this by 
computing the Bayesian 
Evidence. I can then do 
parameter estimation 
using the best model.

Mmm, I did the model 
selection thing, but there 
wasn’t a single best model.



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Multi-model 
Inference

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

I can do this by 
computing the Bayesian 
Evidence. I can then do 
parameter estimation 
using the best model.

Mmm, I did the model 
selection thing, but there 
wasn’t a single best model.

But I still want to know 
how probable the 
parameter values are.



Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Multi-model 
Inference

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

I can do this by 
computing the Bayesian 
Evidence. I can then do 
parameter estimation 
using the best model.
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Fig. 5.— Constraint on three representative inflation models
whose potential is positively curved, V ′′ > 0 (§ 3.3). The con-
tours show the 68% and 95% CL derived from WMAP+BAO+SN.
(Top) The monomial, chaotic-type potential, V (φ) ∝ φα (Linde
1983), with α = 4 (solid) and α = 2 (dashed) for single-field
models, and α = 2 for multi-axion field models with β = 1/2
(Easther & McAllister 2006) (dotted). The symbols show the pre-
dictions from each of these models with the number of e-folds of
inflation equal to 50 and 60. The λφ4 potential is excluded convinc-
ingly, the m2φ2 single-field model lies outside of (at the boundary
of) the 68% region for N = 50 (60), and the m2φ2 multi-axion
model with N = 50 lies outside of the 95% region. (Middle)
The exponential potential, V (φ) ∝ exp[−(φ/Mpl)

p

2/p], which
leads to a power-law inflation, a(t) ∝ tp (Abbott & Wise 1984;
Lucchin & Matarrese 1985). All models but p ∼ 120 are outside
of the 68% region. The models with p < 60 are excluded at more
than 99% CL, and those with p < 70 are outside of the 95% region.
For multi-field models these limits can be translated into the num-
ber of fields as p → npi, where pi is the p-parameter of each field
(Liddle et al. 1998). The data favour n ∼ 120/pi fields. (Bottom)
The hybrid-type potential, V (φ) = V0 + (1/2)m2φ2 = V0(1 + φ̃2),
where φ̃ ≡ mφ/(2V0)1/2 (Linde 1994). The models with φ̃ < 2/3
drive inflation by the vacuum energy term, V0, and are disfavoured
at more than 95% CL, while those with φ̃ > 1 drive inflation by
the quadratic term, and are similar to the chaotic type (the left
panel with α = 2). The transition regime, 2/3 < φ̃ < 1 are outside
of the 68% region, but still within the 95% region.

a(t) ∝ tp, as

r =
16

p
, 1 − ns =

2

p
. (27)

We find that p < 60 is excluded at more than 99%
CL, 60 < p < 70 is within the 99% region but
outside of the 95% region, and p > 70 is within the
95% region. The models with p ∼ 120 lie on the
boundary of the 68% region, but other parameters
are not within the 68% CL. This model can be
thought of as a single-field inflation with p $ 1, or
multi-field inflation with n fields, each having pi ∼
1 or even pi < 1 (assisted inflation; Liddle et al.
1998). In this context, therefore, one can translate
the above limits on p into the limits on the number
of fields. The data favour n ∼ 120/pi fields.

(c) For this model we can divide the parameter space
into 3 regions, depending upon the value of φ̃ that
corresponds to the field value when the wavelength
of fluctuations that we probe with WMAP left the
horizon. When φ̃ % 1, the potential is dominated
by a constant term, which we call “Flat Potential
Regime.” When φ̃ $ 1, the potential is indistin-
guishable from the chaotic-type (model (a)) with
α = 2. We call this region “Chaotic Inflation-like
Regime.” When φ̃ ∼ 1, the model shows a tran-
sitional behaviour, and thus we call it “Transition
Regime.” We find that the flat potential regime
with φ̃ ! 2/3 lies outside of the 95% region. The
transition regime with 2/3 ! φ̃ ! 1 is within the
95% region, but outside of the 68% region. Finally,
the chaotic-like regime contains the 68% region.
Since inflation in this model ends by the second
field whose dynamics depends on other parameters,
there is no constraint from the number of e-folds.

These examples show that the WMAP 5-year data,
combined with the distance information from BAO and
SN, begin to disfavour a number of popular inflation
models.

3.4. Curvature of the observable universe

3.4.1. Motivation

The flatness of the observable universe is one of the
predictions of conventional inflation models. How much
curvature can we expect from inflation? The common
view is that inflation naturally produces the spatial cur-
vature parameter, Ωk, on the order of the magnitude of
quantum fluctuations, i.e., Ωk ∼ 10−5. On the other
hand, the current limit on Ωk is of order 10−2; thus, the
current data are not capable of reaching the level of Ωk

that is predicted by the common view.
Would a detection of Ωk rule out inflation? It is possi-

ble that the value of Ωk is just below our current detec-
tion limit, even within the context of inflation: inflation
may not have lasted for so long, and the curvature radius
of our universe may just be large enough for us not to
see the evidence for curvature within our measurement
accuracy, yet. While this sounds like fine-tuning, it is a
possibility.

This is something we can test by constraining Ωk bet-
ter. There is also a revived (and growing) interest in

WMAP5 Komatsu
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. (27)

We find that p < 60 is excluded at more than 99%
CL, 60 < p < 70 is within the 99% region but
outside of the 95% region, and p > 70 is within the
95% region. The models with p ∼ 120 lie on the
boundary of the 68% region, but other parameters
are not within the 68% CL. This model can be
thought of as a single-field inflation with p $ 1, or
multi-field inflation with n fields, each having pi ∼
1 or even pi < 1 (assisted inflation; Liddle et al.
1998). In this context, therefore, one can translate
the above limits on p into the limits on the number
of fields. The data favour n ∼ 120/pi fields.

(c) For this model we can divide the parameter space
into 3 regions, depending upon the value of φ̃ that
corresponds to the field value when the wavelength
of fluctuations that we probe with WMAP left the
horizon. When φ̃ % 1, the potential is dominated
by a constant term, which we call “Flat Potential
Regime.” When φ̃ $ 1, the potential is indistin-
guishable from the chaotic-type (model (a)) with
α = 2. We call this region “Chaotic Inflation-like
Regime.” When φ̃ ∼ 1, the model shows a tran-
sitional behaviour, and thus we call it “Transition
Regime.” We find that the flat potential regime
with φ̃ ! 2/3 lies outside of the 95% region. The
transition regime with 2/3 ! φ̃ ! 1 is within the
95% region, but outside of the 68% region. Finally,
the chaotic-like regime contains the 68% region.
Since inflation in this model ends by the second
field whose dynamics depends on other parameters,
there is no constraint from the number of e-folds.

These examples show that the WMAP 5-year data,
combined with the distance information from BAO and
SN, begin to disfavour a number of popular inflation
models.

3.4. Curvature of the observable universe

3.4.1. Motivation

The flatness of the observable universe is one of the
predictions of conventional inflation models. How much
curvature can we expect from inflation? The common
view is that inflation naturally produces the spatial cur-
vature parameter, Ωk, on the order of the magnitude of
quantum fluctuations, i.e., Ωk ∼ 10−5. On the other
hand, the current limit on Ωk is of order 10−2; thus, the
current data are not capable of reaching the level of Ωk

that is predicted by the common view.
Would a detection of Ωk rule out inflation? It is possi-

ble that the value of Ωk is just below our current detec-
tion limit, even within the context of inflation: inflation
may not have lasted for so long, and the curvature radius
of our universe may just be large enough for us not to
see the evidence for curvature within our measurement
accuracy, yet. While this sounds like fine-tuning, it is a
possibility.

This is something we can test by constraining Ωk bet-
ter. There is also a revived (and growing) interest in



Datasets Model ln E

WMAP3 only
HZ

varying n
0.0

0.3 ± 0.3

WMAP3+all

HZ
varying n

n and r (uniform on r)
n and r (log on r)

0.0
2.0 ± 0.3
-1.4 ± 0.4
1.9 ± 0.2

}
1.  WMAP alone cannot distinguish between HZ and a varying 
spectral index.

2.  Adding other datasets starts to prefer varying n, but 
only at odds of about 8:1.

3. However inflation predicts we should include both n and r, 
which is actually disfavoured as compared to HZ...

4. ... unless you use a logarithmic prior for r, which puts you back 
close to the r=0 case.
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r: Tensor-to-scalar ratio. `Smoking gun’ for inflation, though 
gravitational waves may also be caused by defects forming after 
inflation. Targeted by upcoming polarization experiments. 
Expectations mixed.

α ≡ dn/dlnk: Running of the spectral index, predicted to be 
too small to detect in almost all models.

fNL: Simplest measure of cosmic non-gaussianity; would indicate 
non-linear processes in perturbation generation. Already tightly 
constrained by WMAP5; Planck has only modest extra power but 
should help resolve interesting hints in WMAP5 data.

Gμ: Topological defects (cosmic strings, monopoles, etc) may be 
produced at the end of inflation.
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tion similar to the HFI channels of frequency 100 GHz,
143 GHz, and 217 GHz, and one 143 GHz polarization
channel, following the current Planck documentation.1

We use a fiducial model close to the WMAP best-fit
flat ΛCDM model, with Ωbh2 = 0.022, Ωch

2 = 0.105,
H0 = 73, τ = 0.09, ns = 0.96, and As = 2.35 × 10−9.
r and f10 take on various values. The likelihood is con-
structed assuming a sky coverage of 0.8, and up to a
maximum multipole of 2000. We use CosmoMC [12] to
obtain parameter confidence contours.

The CMB anisotropies created by cosmic strings were
also included in the simulated data. For this we use the
results from Refs. [8, 11], for both temperature and po-
larization. These CMB anisotropies are obtained from
a field-theoretical approach to cosmic strings, simulating
the Abelian Higgs model on the lattice. The energy–
momentum tensor corresponding to the cosmic strings is
extracted and used to compute Unequal Time Correla-
tors uetcs [13], which in turn leads to the prediction of
CMB anisotropies used in the present work by means of
a modified CMBeasy code [14].

In the end this string contribution, scaled by an ampli-
tude Gµ, is simply added to the other spectra. In turn,
Gµ can be related to f10, which measures the fractional
contribution of strings to the total TT power spectrum
at multipole " = 10. Previous work [7, 15] constraining
the amount of cosmic strings allowed from current CMB

data [17] suggests that not only is a fair amount of string
allowed, but actually about 10% of strings is preferred
[16] (f10 ∼ 0.1, Gµ ∼ 0.7 × 10−6 ) by a δχ2 = 3.9.
Using Bayesian evidence for model comparison a ln evi-
dence difference of 2 ± 0.2 is obtained compared to the
model without strings if one fixes ns = 1. Allowing ns to
deviate from unity, including constraints from Big Bang
Nucleosynthesis [19] and the Hubble Key Project [18] all
reduce the case for strings. Adding such cosmological
non-CMB data, and allowing ns #= 1, an upper bound of
f10 < 0.1 on the amount of strings is obtained.

We reproduce Fig. 1 from Ref. [11] to show the con-
tributions for the temperature and polarization power
spectra coming from inflation, strings and tensors. The
normalizations of these three components are free param-
eters, and in this figure are chosen as follows: the normal-
ization inflationary scalar component is chosen to be the
one that matches current CMB data without including
strings or tensor modes. The string contribution is set at
the 95% upper bound allowed by CMB data [16], i.e.,
f10 = 0.11.2 The inflationary tensor mode normalization
is at the 95% upper bound set by the same data (with-
out including strings), corresponding to a tensor-to-scalar
ratio of r = 0.36 (at comoving wavevector k0 = 0.01
Mpc−1).3 Tensors and strings are subdominant in the

1 www.rssd.esa.int/index.php?project=PLANCK&page=perf top
2 Our calculations predated the release of the five-year WMAP

data.
3 We define r following the convention of the WMAP papers.
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FIG. 1: The CMB temperature and polarization power spec-
tra contributions from cosmic strings (black), inflationary
scalar modes (gray, solid) and inflationary tensor modes (gray,
dot-dashed) [11].

TT, TE and EE cases (where the data is better con-
straining) and it is due to this subdominant nature that
one may wonder whether Planck data will be able to dis-
tinguish between them. By contrast, both tensors and
strings dominate in the BB case, where (scalar) infla-
tionary modes only enter through lensing.

We simulate data for a set of different cosmologies,
varying the amount of primordial tensors r and cosmic
strings f10. The values of r chosen for the fiducial cos-
mologies lie towards the upper bound of detection of
Planck, rather than the values of r ∼ 10−23 that string
theory seems to suggest. If Planck does detect some ex-
tra ingredient beyond the standard (scalar) concordance
model, the parameter values that would be inferred are
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results from Refs. [8, 11], for both temperature and po-
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Nucleosynthesis [19] and the Hubble Key Project [18] all
reduce the case for strings. Adding such cosmological
non-CMB data, and allowing ns #= 1, an upper bound of
f10 < 0.1 on the amount of strings is obtained.

We reproduce Fig. 1 from Ref. [11] to show the con-
tributions for the temperature and polarization power
spectra coming from inflation, strings and tensors. The
normalizations of these three components are free param-
eters, and in this figure are chosen as follows: the normal-
ization inflationary scalar component is chosen to be the
one that matches current CMB data without including
strings or tensor modes. The string contribution is set at
the 95% upper bound allowed by CMB data [16], i.e.,
f10 = 0.11.2 The inflationary tensor mode normalization
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FIG. 1: The CMB temperature and polarization power spec-
tra contributions from cosmic strings (black), inflationary
scalar modes (gray, solid) and inflationary tensor modes (gray,
dot-dashed) [11].

TT, TE and EE cases (where the data is better con-
straining) and it is due to this subdominant nature that
one may wonder whether Planck data will be able to dis-
tinguish between them. By contrast, both tensors and
strings dominate in the BB case, where (scalar) infla-
tionary modes only enter through lensing.

We simulate data for a set of different cosmologies,
varying the amount of primordial tensors r and cosmic
strings f10. The values of r chosen for the fiducial cos-
mologies lie towards the upper bound of detection of
Planck, rather than the values of r ∼ 10−23 that string
theory seems to suggest. If Planck does detect some ex-
tra ingredient beyond the standard (scalar) concordance
model, the parameter values that would be inferred are
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r and f10 take on various values. The likelihood is con-
structed assuming a sky coverage of 0.8, and up to a
maximum multipole of 2000. We use CosmoMC [12] to
obtain parameter confidence contours.

The CMB anisotropies created by cosmic strings were
also included in the simulated data. For this we use the
results from Refs. [8, 11], for both temperature and po-
larization. These CMB anisotropies are obtained from
a field-theoretical approach to cosmic strings, simulating
the Abelian Higgs model on the lattice. The energy–
momentum tensor corresponding to the cosmic strings is
extracted and used to compute Unequal Time Correla-
tors uetcs [13], which in turn leads to the prediction of
CMB anisotropies used in the present work by means of
a modified CMBeasy code [14].

In the end this string contribution, scaled by an ampli-
tude Gµ, is simply added to the other spectra. In turn,
Gµ can be related to f10, which measures the fractional
contribution of strings to the total TT power spectrum
at multipole " = 10. Previous work [7, 15] constraining
the amount of cosmic strings allowed from current CMB

data [17] suggests that not only is a fair amount of string
allowed, but actually about 10% of strings is preferred
[16] (f10 ∼ 0.1, Gµ ∼ 0.7 × 10−6 ) by a δχ2 = 3.9.
Using Bayesian evidence for model comparison a ln evi-
dence difference of 2 ± 0.2 is obtained compared to the
model without strings if one fixes ns = 1. Allowing ns to
deviate from unity, including constraints from Big Bang
Nucleosynthesis [19] and the Hubble Key Project [18] all
reduce the case for strings. Adding such cosmological
non-CMB data, and allowing ns #= 1, an upper bound of
f10 < 0.1 on the amount of strings is obtained.

We reproduce Fig. 1 from Ref. [11] to show the con-
tributions for the temperature and polarization power
spectra coming from inflation, strings and tensors. The
normalizations of these three components are free param-
eters, and in this figure are chosen as follows: the normal-
ization inflationary scalar component is chosen to be the
one that matches current CMB data without including
strings or tensor modes. The string contribution is set at
the 95% upper bound allowed by CMB data [16], i.e.,
f10 = 0.11.2 The inflationary tensor mode normalization
is at the 95% upper bound set by the same data (with-
out including strings), corresponding to a tensor-to-scalar
ratio of r = 0.36 (at comoving wavevector k0 = 0.01
Mpc−1).3 Tensors and strings are subdominant in the
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FIG. 1: The CMB temperature and polarization power spec-
tra contributions from cosmic strings (black), inflationary
scalar modes (gray, solid) and inflationary tensor modes (gray,
dot-dashed) [11].

TT, TE and EE cases (where the data is better con-
straining) and it is due to this subdominant nature that
one may wonder whether Planck data will be able to dis-
tinguish between them. By contrast, both tensors and
strings dominate in the BB case, where (scalar) infla-
tionary modes only enter through lensing.

We simulate data for a set of different cosmologies,
varying the amount of primordial tensors r and cosmic
strings f10. The values of r chosen for the fiducial cos-
mologies lie towards the upper bound of detection of
Planck, rather than the values of r ∼ 10−23 that string
theory seems to suggest. If Planck does detect some ex-
tra ingredient beyond the standard (scalar) concordance
model, the parameter values that would be inferred are
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flat ΛCDM model, with Ωbh2 = 0.022, Ωch

2 = 0.105,
H0 = 73, τ = 0.09, ns = 0.96, and As = 2.35 × 10−9.
r and f10 take on various values. The likelihood is con-
structed assuming a sky coverage of 0.8, and up to a
maximum multipole of 2000. We use CosmoMC [12] to
obtain parameter confidence contours.

The CMB anisotropies created by cosmic strings were
also included in the simulated data. For this we use the
results from Refs. [8, 11], for both temperature and po-
larization. These CMB anisotropies are obtained from
a field-theoretical approach to cosmic strings, simulating
the Abelian Higgs model on the lattice. The energy–
momentum tensor corresponding to the cosmic strings is
extracted and used to compute Unequal Time Correla-
tors uetcs [13], which in turn leads to the prediction of
CMB anisotropies used in the present work by means of
a modified CMBeasy code [14].

In the end this string contribution, scaled by an ampli-
tude Gµ, is simply added to the other spectra. In turn,
Gµ can be related to f10, which measures the fractional
contribution of strings to the total TT power spectrum
at multipole " = 10. Previous work [7, 15] constraining
the amount of cosmic strings allowed from current CMB

data [17] suggests that not only is a fair amount of string
allowed, but actually about 10% of strings is preferred
[16] (f10 ∼ 0.1, Gµ ∼ 0.7 × 10−6 ) by a δχ2 = 3.9.
Using Bayesian evidence for model comparison a ln evi-
dence difference of 2 ± 0.2 is obtained compared to the
model without strings if one fixes ns = 1. Allowing ns to
deviate from unity, including constraints from Big Bang
Nucleosynthesis [19] and the Hubble Key Project [18] all
reduce the case for strings. Adding such cosmological
non-CMB data, and allowing ns #= 1, an upper bound of
f10 < 0.1 on the amount of strings is obtained.

We reproduce Fig. 1 from Ref. [11] to show the con-
tributions for the temperature and polarization power
spectra coming from inflation, strings and tensors. The
normalizations of these three components are free param-
eters, and in this figure are chosen as follows: the normal-
ization inflationary scalar component is chosen to be the
one that matches current CMB data without including
strings or tensor modes. The string contribution is set at
the 95% upper bound allowed by CMB data [16], i.e.,
f10 = 0.11.2 The inflationary tensor mode normalization
is at the 95% upper bound set by the same data (with-
out including strings), corresponding to a tensor-to-scalar
ratio of r = 0.36 (at comoving wavevector k0 = 0.01
Mpc−1).3 Tensors and strings are subdominant in the
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FIG. 1: The CMB temperature and polarization power spec-
tra contributions from cosmic strings (black), inflationary
scalar modes (gray, solid) and inflationary tensor modes (gray,
dot-dashed) [11].

TT, TE and EE cases (where the data is better con-
straining) and it is due to this subdominant nature that
one may wonder whether Planck data will be able to dis-
tinguish between them. By contrast, both tensors and
strings dominate in the BB case, where (scalar) infla-
tionary modes only enter through lensing.

We simulate data for a set of different cosmologies,
varying the amount of primordial tensors r and cosmic
strings f10. The values of r chosen for the fiducial cos-
mologies lie towards the upper bound of detection of
Planck, rather than the values of r ∼ 10−23 that string
theory seems to suggest. If Planck does detect some ex-
tra ingredient beyond the standard (scalar) concordance
model, the parameter values that would be inferred are
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data [17] suggests that not only is a fair amount of string
allowed, but actually about 10% of strings is preferred
[16] (f10 ∼ 0.1, Gµ ∼ 0.7 × 10−6 ) by a δχ2 = 3.9.
Using Bayesian evidence for model comparison a ln evi-
dence difference of 2 ± 0.2 is obtained compared to the
model without strings if one fixes ns = 1. Allowing ns to
deviate from unity, including constraints from Big Bang
Nucleosynthesis [19] and the Hubble Key Project [18] all
reduce the case for strings. Adding such cosmological
non-CMB data, and allowing ns #= 1, an upper bound of
f10 < 0.1 on the amount of strings is obtained.

We reproduce Fig. 1 from Ref. [11] to show the con-
tributions for the temperature and polarization power
spectra coming from inflation, strings and tensors. The
normalizations of these three components are free param-
eters, and in this figure are chosen as follows: the normal-
ization inflationary scalar component is chosen to be the
one that matches current CMB data without including
strings or tensor modes. The string contribution is set at
the 95% upper bound allowed by CMB data [16], i.e.,
f10 = 0.11.2 The inflationary tensor mode normalization
is at the 95% upper bound set by the same data (with-
out including strings), corresponding to a tensor-to-scalar
ratio of r = 0.36 (at comoving wavevector k0 = 0.01
Mpc−1).3 Tensors and strings are subdominant in the

1 www.rssd.esa.int/index.php?project=PLANCK&page=perf top
2 Our calculations predated the release of the five-year WMAP

data.
3 We define r following the convention of the WMAP papers.
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FIG. 1: The CMB temperature and polarization power spec-
tra contributions from cosmic strings (black), inflationary
scalar modes (gray, solid) and inflationary tensor modes (gray,
dot-dashed) [11].

TT, TE and EE cases (where the data is better con-
straining) and it is due to this subdominant nature that
one may wonder whether Planck data will be able to dis-
tinguish between them. By contrast, both tensors and
strings dominate in the BB case, where (scalar) infla-
tionary modes only enter through lensing.

We simulate data for a set of different cosmologies,
varying the amount of primordial tensors r and cosmic
strings f10. The values of r chosen for the fiducial cos-
mologies lie towards the upper bound of detection of
Planck, rather than the values of r ∼ 10−23 that string
theory seems to suggest. If Planck does detect some ex-
tra ingredient beyond the standard (scalar) concordance
model, the parameter values that would be inferred are

Bevis et al 2007

Inflation scalar
Cosmic strings

Inflation tensor

Fundamental physics models 
suggest that the scalar field cannot 
exceed Planck values ...
   ... which implies B modes from r 
may be too small to be detectable ...
   ... but to satisfy this, usually 
inflation models are built with 
multiple fields (eg hybrid inflaton) ...
   ... which then lead to defect 
production ...



Topological defects and inflation
Topological defects, eg cosmic strings, may be produced when 
inflation ends. They induce both E and B mode CMB polarization.
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tion similar to the HFI channels of frequency 100 GHz,
143 GHz, and 217 GHz, and one 143 GHz polarization
channel, following the current Planck documentation.1

We use a fiducial model close to the WMAP best-fit
flat ΛCDM model, with Ωbh2 = 0.022, Ωch

2 = 0.105,
H0 = 73, τ = 0.09, ns = 0.96, and As = 2.35 × 10−9.
r and f10 take on various values. The likelihood is con-
structed assuming a sky coverage of 0.8, and up to a
maximum multipole of 2000. We use CosmoMC [12] to
obtain parameter confidence contours.

The CMB anisotropies created by cosmic strings were
also included in the simulated data. For this we use the
results from Refs. [8, 11], for both temperature and po-
larization. These CMB anisotropies are obtained from
a field-theoretical approach to cosmic strings, simulating
the Abelian Higgs model on the lattice. The energy–
momentum tensor corresponding to the cosmic strings is
extracted and used to compute Unequal Time Correla-
tors uetcs [13], which in turn leads to the prediction of
CMB anisotropies used in the present work by means of
a modified CMBeasy code [14].

In the end this string contribution, scaled by an ampli-
tude Gµ, is simply added to the other spectra. In turn,
Gµ can be related to f10, which measures the fractional
contribution of strings to the total TT power spectrum
at multipole " = 10. Previous work [7, 15] constraining
the amount of cosmic strings allowed from current CMB

data [17] suggests that not only is a fair amount of string
allowed, but actually about 10% of strings is preferred
[16] (f10 ∼ 0.1, Gµ ∼ 0.7 × 10−6 ) by a δχ2 = 3.9.
Using Bayesian evidence for model comparison a ln evi-
dence difference of 2 ± 0.2 is obtained compared to the
model without strings if one fixes ns = 1. Allowing ns to
deviate from unity, including constraints from Big Bang
Nucleosynthesis [19] and the Hubble Key Project [18] all
reduce the case for strings. Adding such cosmological
non-CMB data, and allowing ns #= 1, an upper bound of
f10 < 0.1 on the amount of strings is obtained.

We reproduce Fig. 1 from Ref. [11] to show the con-
tributions for the temperature and polarization power
spectra coming from inflation, strings and tensors. The
normalizations of these three components are free param-
eters, and in this figure are chosen as follows: the normal-
ization inflationary scalar component is chosen to be the
one that matches current CMB data without including
strings or tensor modes. The string contribution is set at
the 95% upper bound allowed by CMB data [16], i.e.,
f10 = 0.11.2 The inflationary tensor mode normalization
is at the 95% upper bound set by the same data (with-
out including strings), corresponding to a tensor-to-scalar
ratio of r = 0.36 (at comoving wavevector k0 = 0.01
Mpc−1).3 Tensors and strings are subdominant in the
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3 We define r following the convention of the WMAP papers.

101 102 103
101

102

103

l(l
+1
)C
l / 

2π
  [

µK
2 ] TT

101 102 103

10−2

10−1

100

101

102

l(l
+1
)C
l / 

2π
  [

µK
2 ]

TE

101 102 103
10−3

10−2

10−1

100

101

l(l
+1
)C
l / 

2π
  [

µK
2 ]

EE

101 102 103

10−3

10−2

10−1

l(l
+1
)C
l / 

2π
  [

µK
2 ]

l

BB

FIG. 1: The CMB temperature and polarization power spec-
tra contributions from cosmic strings (black), inflationary
scalar modes (gray, solid) and inflationary tensor modes (gray,
dot-dashed) [11].

TT, TE and EE cases (where the data is better con-
straining) and it is due to this subdominant nature that
one may wonder whether Planck data will be able to dis-
tinguish between them. By contrast, both tensors and
strings dominate in the BB case, where (scalar) infla-
tionary modes only enter through lensing.

We simulate data for a set of different cosmologies,
varying the amount of primordial tensors r and cosmic
strings f10. The values of r chosen for the fiducial cos-
mologies lie towards the upper bound of detection of
Planck, rather than the values of r ∼ 10−23 that string
theory seems to suggest. If Planck does detect some ex-
tra ingredient beyond the standard (scalar) concordance
model, the parameter values that would be inferred are
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Inflation scalar
Cosmic strings

Inflation tensor

Fundamental physics models 
suggest that the scalar field cannot 
exceed Planck values ...
   ... which implies B modes from r 
may be too small to be detectable ...
   ... but to satisfy this, usually 
inflation models are built with 
multiple fields (eg hybrid inflaton) ...
   ... which then lead to defect 
production ...
   ... which may yield observable B 
modes!
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Inflation is beginning to be meaningfully tested by 
observations. The Planck Satellite should provide the next 
major step forward (unless beaten to the punch by 
ground-based polarization experiments).

Confirmation of scale-dependence of the perturbations   
(n ≠ 1) would be a strong indicator of a dynamical origin 
of perturbations, but is not yet secure.

Ultimately, only relatively limited information may be 
available from data to constrain a very wide model space.

Conclusions




