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B Inflationary phenomenology.

Qualitative construction of inflationary scenarios to explore the range of
phenomenology. Eg chaotic inflation, multi-field models, multiverse,
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Types of inflationary research

B Fundamental physics modelling of inflation.

Building inflation models within the context of M-theory/braneworld/
supergravity/etc etc. Eg KKLT, D3/D7, etc.

B Inflationary phenomenology.

Qualitative construction of inflationary scenarios to explore the range of
phenomenology. Eg chaotic inflation, multi-field models, multiverse,
o fEhealing CUvaton ..
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Types of inflationary research

B Fundamental physics modelling of inflation.

Building inflation models within the context of M-theory/braneworld/
supergravity/etc etc. Eg KKLT, D3/D7, etc.

B Inflationary phenomenology.

Qualitative construction of inflationary scenarios to explore the range of
phenomenology. Eg chaotic inflation, multi-field models, multiverse,
reheating, curvaton.
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Slide from a review talk at Cosmo-01 (Rovaniemi, Finland)

The Key Tests of Inflation

The simplest models of inflation predict
spectra of ) scalar

and perturbations in their

In a Universe.

This statement lists the key predictions of inflation that we would like to
test. However some tests are more powerful than others, because some
are predictions only of the simplest inflationary models.

Test: auseful test of a model is one which, if failed, leads to rejection of that model.

it SUPPO r‘ring evidence is the verification of a prediction which, while not

generic, 1s seen as indicative that the model 1s correct. "
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The simplest models of inflation predict nearly
power-law spectra of adiabatic, gaussian scalar
and tensor perturbations in their growing mode
- |inaspatially-flat Universe.




The most basic observables that can be predicted from a
given inflation model are

n: Spectral index of density perturbations.

r:  Ratio of gravitational waves to density perturbations.
In the simplest inflation models (eg a single scalar field
rolling on a nearly flat potential) these are all we need.
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given inflation model are

n: Spectral index of density perturbations.

r:  Ratio of gravitational waves to density perturbations.

In the simplest inflation models (eg a single scalar field
rolling on a nearly flat potential) these are all we need.

But more complicated inflation models may produce further
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The most basic observables that can be predicted from a

given inflation model are
n: Spectral index of density perturbations.
r:  Ratio of gravitational waves to density perturbations.

In the simplest inflation models (eg a single scalar field
rolling on a nearly flat potential) these are all we need.

But more complicated inflation models may produce further
observables, including
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Throughout, I'll assume that the underlying cosmology is described by
the ACDM model, ie a cosmology with dark matter and dark energy.

. Nearly scale-invariant spectrum
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Throughout, I'll assume that the underlying cosmology is described by
the ACDM model, ie a cosmology with dark matter and dark energy.

n= O.963+%%1f; (68 percent confidence)

(for a power-law fit to the data)

Good fit to data assuming these dominate.

No compelling evidence of primordial non-
gaussianity.
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Good fit to data assuming these dominate.

No compelling evidence of primordial non-
gaussianity.
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Throughout, I'll assume that the underlying cosmology is described by
the ACDM model, ie a cosmology with dark matter and dark energy.

n= O.963+%%1f; (68 percent confidence)

(for a power-law fit to the data)

Good fit to data assuming these dominate.

No compelling evidence of primordial non-
gaussianity.
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Throughout, I'll assume that the underlying cosmology is described by
the ACDM model, ie a cosmology with dark matter and dark energy.

n= O.963+%%1f; (68 percent confidence)

(for a power-law fit to the data)

Good fit to data assuming these dominate.

No compelling evidence of primordial non-
gaussianity.
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Throughout, I'll assume that the underlying cosmology is described by
the ACDM model, ie a cosmology with dark matter and dark energy.

0.014 .
. Nearly scale-invariant spectrum n=0.963",,5 (68 percentconfidence)
(for a power-law fit to the data)

Good fit to data assuming these dominate.

No compelling evidence of primordial non-
gaussianity.
- r<0. 43 (95 percent conf.) WMAPS‘
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The distinction is important.

n =1 gives the perturbations a high degree of (statistical) symmetry

which may indicate their origin lies in some unknown fundamental

symmetry.

If n # 1, the indication is for dynamical evolution as perturbations are
- being produced, as in inflation.
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The distinction is important.

n =1 gives the perturbations a high degree of (statistical) symmetry
which may indicate their origin lies in some unknown fundamental
symmetry.

If n # 1, the indication is for dynamical evolution as perturbations are
being produced, as in inflation.
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Observational analyses put n = 1 at around the 2 to 3 sigma position.
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Observational analyses put n = 1 at around the 2 to 3 sigma position.

But is that the right question to ask?
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Levels of Bayesian inference

I've decided what the
correct model is.

Now | want to know
what values of the
parameters are
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Levels of Bayesian inference

I've decided what the Now | think about it, |

correct model is. don’t actually know what
the correct model is. It
Now | want to know could be one of several.

what values of the
parameters are
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Levels of Bayesian inference

I've decided what the Now | think about it, |

correct model is. don’t actually know what
the correct model is. It

Now | want to know could be one of several.

what values of the
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Levels of Bayesian inference

Parameter

Model

Multi-model

Estimation
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correct model is.

Now | want to know
what values of the
parameters are
consistent with the
data.

| can do this using e.g.

Markov Chain Monte
Gailo:

Selection
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the correct model is. It
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what the best model is.

| can do this by
computing the Bayesian
Evidence. | can then do
parameter estimation
using the best model.
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Levels of Bayesian inference

Parameter

Estimation

Model
Selection

Multi-model
Inference

I’'ve decided what the
correct model is.

Now | want to know
what values of the
parameters are
consistent with the
data.

| can do this using e.g.

Markov Chain Monte
Gailo:

Now | think about it, |
don’t actually know what
the correct model is. It
could be one of several.

Now | want to know
what the best model is.

| can do this by
computing the Bayesian
Evidence. | can then do
parameter estimation
using the best model.

Mmm, | did the model
selection thing, but there
wasn’t a single best model.

But | still want to know
now probable the
parameter values are.

| can do this by combining
the parameter likelihoods
using Bayesian Model
Averaging, adding them
together weighted by the
model probabilities.



Model selection for inflation

Parkinson, Mukherjee and Liddle, PRD, astro-ph/0605003

What is actually required is a comparison of a model where n is
fixed to one, with a model where n is allowed to vary and is fit
from the data. Such a comparison is known as model selection,
which can be carried out by evaluating the Bayesian evidence E.
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What is actually required is a comparison of a model where n is
fixed to one, with a model where n is allowed to vary and is fit
from the data. Such a comparison is known as model selection,
which can be carried out by evaluating the Bayesian evidence E.

We compute the evidence numerically using our code CosmoNest. It
measures how the model likelihood changes in response to the data.
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4. ... unless you use a logarithmic prior for r, which puts you back
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Inflationary parameters of the future

B N: Upcoming experiments, especially Planck, should resolve the
issue of whether n =1 or not.

B 1! Tensor-to-scalar ratio. “Smoking gun’ for inflation, though

oravitational waves may also be caused by defects forming after

inflation. Targeted by upcoming polarization experiments.
Expectations mixed.
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B N: Upcoming experiments, especially Planck, should resolve the
issue of whether n =1 or not.
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Inflationary parameters of the future

B N: Upcoming experiments, especially Planck, should resolve the
issue of whether n =1 or not.

B 1! Tensor-to-scalar ratio. “Smoking gun’ for inflation, though

oravitational waves may also be caused by defects forming after

inflation. Targeted by upcoming polarization experiments.
Expectations mixed.
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B N: Upcoming experiments, especially Planck, should resolve the
issue of whether n =1 or not.

B 1! Tensor-to-scalar ratio. “Smoking gun’ for inflation, though

oravitational waves may also be caused by defects forming after

inflation. Targeted by upcoming polarization experiments.
Expectations mixed.
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Model selection forecasts for Planck

Pahud, Liddle, Mukherjee, and Parkinson, MNRAS, astro-ph/0701481

Zones of certainty/uncertainty for n and a=dn/dInk.
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Model selection forecasts for Planck

Pahud, Liddle, Mukherjee, and Parkinson, MNRAS, astro-ph/0701481

Zones of certainty/uncertainty for n and &=dn/dInk.

Red: HZ model
preferred

Green: power-law
model preferred

Blue: running model
preferred
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Topological defects and inflation
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Topological defects and inflation

Topological defects, eg cosmic strings, may be produced when
inflation ends. They induce both £ and B mode CMB polarization.
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Topological defects and inflation

Topological defects, eg cosmic strings, may be produced when
inflation ends. They induce both £ and B mode CMB polarization.

Fundamental physics models
suggest that the scalar field cannot
exceed Planck values ...
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Fundamental physics models
suggest that the scalar field cannot
exceed Planck values ...
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may be too small to be detectable ...
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Topological defects and inflation

Topological defects, eg cosmic strings, may be produced when
inflation ends. They induce both £ and B mode CMB polarization.

Fundamental physics models
suggest that the scalar field cannot
exceed Planck values ...

... which implies B modes from r
may be too small to be detectable ...

... but to satisfy this, usually o
inflation models are built with
multiple fields (eg hybrid inflaton) ...
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Topological defects and inflation

Topological defects, eg cosmic strings, may be produced when
inflation ends. They induce both £ and B mode CMB polarization.

Fundamental physics models
suggest that the scalar field cannot
exceed Planck values ...

... which implies B modes from r
may be too small to be detectable ...

... but to satisfy this, usually o
inflation models are built with
multiple fields (eg hybrid inflaton) ...

... which then lead to defect
production ...
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Topological defects and inflation

Topological defects, eg cosmic strings, may be produced when
inflation ends. They induce both £ and B mode CMB polarization.

Fundamental physics models
suggest that the scalar field cannot
exceed Planck values ...

... which implies B modes from r
may be too small to be detectable ...

... but to satisfy this, usually o
inflation models are built with
multiple fields (eg hybrid inflaton) ...

... which then lead to defect
production ...

... which may yield observable B
modes!

Bevis et al 2007
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M Inflation is beginning to be meaningfully tested by
observations. The Planck Satellite should provide the next
major step forward (unless beaten to the punch by
sround-based polarization experiments).
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M Inflation is beginning to be meaningfully tested by
observations. The Planck Satellite should provide the next
major step forward (unless beaten to the punch by

ground-based polarization ex
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Conclusions

M Inflation is beginning to be meaningfully tested by
observations. The Planck Satellite should provide the next
major step forward (unless beaten to the punch by
sround-based polarization experiments).

= Confirmation of scale-dependence of the perturbations
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