
Wayne Hu
Cabo, January 2009

Secondary CMB Anisotropy

III: Cosmic Acceleration



Wayne Hu
Cabo, January 2009

Secondary CMB Anisotropy

III: Cosmic Acceleration



SZ

Primary Anisotropies

ISW
D

oppler

V
ishniac

L
ensing

Patchy rei.

Physics of Secondary Anisotropies

reionization
z~10

recombination
z~1000

acceleration
z~1



Scattering Secondaries

10

100

1

0.1

∆ T
 (µ

K
)

suppression

Doppler
density–mod

ion-mod

linear

l
10 100 1000

SZ



Gravitational Secondaries

    ISW

Moving Halo

lensing

un–
lensed

l

10

100

1

0.1
10 100 1000

∆ T
 (µ

K
)



Integrated Sachs-Wolfe
Effect



ISW Effect

• Gravitational blueshift on infall does not cancel redshift 
on climbing out

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ

• Effect from potential hills and wells cancel on small scales
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• Regardless of the equation of state an energy component
that clusters preserves an approximately constant 
gravitational potential (formally Bardeen curvature ζ)



Smooth Energy Density & Potential Decay

• Regardless of the equation of state an energy component
that clusters preserves an approximately constant 
gravitational potential (formally Bardeen curvature ζ)

• A smooth component contributes
density ρ to the expansion

but not
density fluctuation δρ to the Poisson equation

• Imbalance causes potential to decay once smooth 
component dominates the expansion



ISW Spatial Modes
• ISW effect comes from nearby acceleration regime 
• Shorter wavelengths project onto same angle
• Broad source kernel: Limber cancellation out to quadrupole
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• Transfer function for the quadrupole

Gordon & Hu (2004)



Smooth Energy Density & Potential Decay

• Regardless of the equation of state an energy component
that clusters preserves an approximately constant 
gravitational potential (formally Bardeen curvature ζ)

• A smooth component contributes
density ρ to the expansion

but not
density fluctuation δρ to the Poisson equation

• Imbalance causes potential to decay once smooth 
component dominates the expansion

• Scalar field dark energy (quintessence) is smooth out to
the horizon scale (sound speed cs=1)

• Potential decay measures the clustering  properties and 
hence the particle properties of the dark energy



ISW & Dark Energy



Dark Energy
• Peaks measure distance to recombination

• ISW effect constrains dynamics of acceleration
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Dark Energy Sound Speed
• Smooth and clustered regimes separated by sound horizon

• Covariant definition: ce
2=δp/δρ where momentum flux vanishes 

• For scalar field dark energy uniquely defined by kinetic term

Hu (1998)
Garriga & Mukhanov (1999) [plot: Hu & Scranton (2004)]
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Dark Energy Clustering
• ISW effect intrinsically sensitive to dark energy smoothness
• Large angle contributions reduced if clustered

Hu (1998); [plot: Hu & Scranton (2004)]
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ISW-Galaxy Correlation
•	 Decaying potential: galaxy positions correlated with CMB

•	 Growing potential: galaxy positions anticorrelated with CMB

•	 Observations  indicate correlation 



ISW-Galaxy Correlation
• ~4σ joint detection of ISW correlation with large scale structure
 (galaxies)
• ~2σ high compared with ΛCDM

ΛCDM

Ho et al (2007) [Giannantonio et al 2008]



Ultra-Deep Wide Survey
• Ultimate limit: deep wide-field survey with photometric redshift 
 errors of σ(z)=0.03(1+z), median redshift z=1.5, 70 gal/arcmin2

Afshordi (2004); Hu & Scranton (2004)
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Galaxy Cross Correlation
• Cross correlation highly sensitive to the dark energy smoothness
 (parameterized by sound speed)

Hu & Scranton (2004)
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Galaxy Cross Correlation
• Significance of the separation between quintessence and a more
 clustered dark energy with sound speed ce

Hu & Scranton (2004)
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Dark Energy Smoothness
• More robust way of quoting constraints: how smooth is the
 dark energy out to a given physical scale:

Hu & Scranton (2004)

(Φ
−Φ

s)/
Φ

s

0.01
1 10

0.03

0.10

ceη0  (Gpc)

total

z<1

l >10

fsky=1



k (Mpc-1)
0.010.0010.0001

0.002

0

-0.002

0.2

0

-0.2

TE 2
TΘ 2

(a) Temperature

(b) Polarization

total

total

A&I

A&I

SW

Isocurvature DE Perturbations

• Anti-correlated DE perturbations: ISW cancel SW effect

Moroi & Takahashi (2004); Gordon & Hu (2004)
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Polarization Rejects ISW

• Polarization unchanged; cross correlation lowered

Gordon & Hu (2004)
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ISW & Modified Gravity



Parameterizing Acceleration
• Cosmic acceleration, like the cosmological constant, can either be

viewed as arising from

Missing, or dark energy, with w ≡ p̄/ρ̄ < −1/3

Modification of gravity on large scales

Gµν = 8πG
(
TM
µν + TDE

µν

)
F (gµν) +Gµν = 8πGTM

µν

• Proof of principle models for both exist: quintessence, k-essence;
DGP braneworld acceleration, f(R) modified action

• Compelling models for either explanation lacking

• Study models as illustrative toy models whose features can be
generalized



DGP Braneworld Acceleration
• Braneworld acceleration (Dvali, Gabadadze & Porrati 2000)

S =

∫
d5x
√
−g
[

(5)R

2κ2
+ δ(χ)

(
(4)R

2µ2
+ Lm

)]
with crossover scale rc = κ2/2µ2

• Influence of bulk through Weyl tensor anisotropy - solve master
equation in bulk (Deffayet 2001)

• Matter still minimally coupled and conserved

• Exhibits the 3 regimes of modified gravity
• Weyl tensor anisotropy dominated conserved curvature regime
r > rc (Sawicki, Song, Hu 2006; Cardoso et al 2007)

• Brane bending scalar tensor regime r∗ < r < rc (Lue, Soccimarro,
Starkman 2004; Koyama & Maartens 2006)

• Strong coupling General Relativistic regime r < r∗ = (r2
crg)

1/3

where rg = 2GM (Dvali 2006)



Hu, Huterer & Smith (2006)

DGP Horizon Scales
• Metric and matter evolution well-matched by PPF description
• Standard GR tools apply (CAMB), self-consistent, gauge invar.
 

Hu & Sawicki (2007); Hu (2008)
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   DGP CMB Large-Angle Excess
• Extra dimension modify gravity on large scales
• 4D universe bending into extra dimension alters gravitational 
 redshifts in cosmic microwave background
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Hu, Huterer & Smith (2006)

CMB in DGP
• Adding cut off as an epicycle can fix distances, ISW problem
• Suppresses polarization in violation of EE data - cannot save DGP!

Fang et al (2008)
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Modified Action f (R) Model
• R: Ricci scalar or “curvature”
• f(R): modified action (Starobinsky 1980; Carroll et al 2004)

S =

∫
d4x
√
−g
[
R + f(R)

16πG
+ Lm

]
• fR ≡ df/dR: additional propagating scalar degree of freedom

(metric variation)

• fRR ≡ d2f/dR2: Compton wavelength of fR squared, inverse
mass squared

• B: Compton wavelength of fR squared in units of the Hubble
length

B ≡ fRR
1 + fR

R′
H

H ′

• ′ ≡ d/d ln a: scale factor as time coordinate
see Tristan Smith's talk
 



Hu, Huterer & Smith (2006)

PPF f(R) Description
• Metric and matter evolution well-matched by PPF description
• Standard GR tools apply (CAMB), self-consistent, gauge invar.
 

Hu & Sawicki (2007); Hu (2008)
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ISW Quadrupole
• Reduction of large angle anisotropy for B0~1 for same expansion 
 history and distances as ΛCDM
• Well-tested small scale anisotropy unchanged 
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Hu, Huterer & Smith (2006)

PPF f(R) Description
• Metric and matter evolution well-matched by PPF description
• Standard GR tools apply (CAMB), self-consistent, gauge invar.
 

Hu & Sawicki (2007); Hu (2008)
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Hu, Huterer & Smith (2006)

Galaxy-ISW Anti-Correlation
• Large Compton wavelength B1/2 creates potential growth which can
 anti-correlate galaxies and the CMB
• In tension with detections of positive correlations across a range
 of redshifts

Song, Peiris & Hu (2007)
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Parameterized Post-Friedmann
• Parameterizing the degrees of freedom associated with metric
 modification of gravity that explain cosmic acceleration
• Simple models that add in only one extra scale to explain
 acceleration tend to predict substantial changes near horizon
 and hence ISW
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Non-linear ISW Effect



Moving Halo Effect

    



Moving Halo Effect
•	 Change in potential due to halo moving across the line
	 of sight

    

Moving Halo
a.k.a. Rees-Sciama
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SZ Effect



Modulated Doppler Effect

overdensity,
ionization patch,
cluster...

e— velocity unscattered γ

blueshifted γ

Observer

Reionization Surface



Thermal SZ Effect

overdensity,
ionization patch,
cluster...

e– velocity unscattered γ

upscattered γ

Observer

Large Scale Structure



Scattering Secondaries
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Beyond Thomson Limit
• Thomson scattering ei + γi → ef + γf in rest frame where the

frequencies ωi = ωf (elastic scattering) cannot strictly be true

• Photons carry off E/c momentum and so to conserve momentum
the electron must recoil

• Doppler shift from transformation from rest frame contains second
order terms

• General case (arbitrary electron velocity)
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Energy-Momentum Conservation
• From energy-momentum conservation, the energy change is

Ef
Ei

=
1− βi cosαi

1− βi cosαf + Ei

γmc2
(1− cos θ)

where n̂f · vi = vi cosαf and n̂i · vi = vi cosαi

• Two ways of changing the energy: Doppler boost βi from
incoming electron velocity and Ei non-negligible compared to
γmc2

• Isolate recoil in incoming electron rest frame βi = 0 and γ = 1

Ef
Ei

∣∣∣
rest

=
1

1 + Ei

mc2
(1− cos θ)



Recoil Effect
• Since −1 ≤ cos θ ≤ 1, Ef ≤ Ei, energy is lost from the recoil

except for purely forward scattering

• The backwards scattering limit is easy to see

|qf | = m|vf | = 2
Ei
c
,

∆E =
1

2
mv2

f =
1

2
m

(
2Ei
mc

)2

= 2
Ei
mc2

Ei

Ef = Ei −∆E = (1− 2
Ei
mc2

)Ei ≈
Ei

1 + 2 Ei

mc2



Second Order Doppler Shift
• Doppler effect: consider the limit of βi � 1 then expand to first

order

Ef
Ei

= 1− βi cosαi + βi cosαf −
Ei
mc2

(1− cos θ)

however averaging over angles the Doppler shifts don’t change the
energies

• To second order in the velocities, the Doppler shift transfers energy
from the electron to the photon in opposition to the recoil

Ef
Ei

= 1− βi cosαi + βi cosαf + β2
i cos2 αf −

Ei
mc2

〈Ef
Ei
〉 ≈ 1 +

1

3
β2
i −

Ei
mc2



Thermalization
• For a thermal distribution of velocities

1

2
m〈v2〉 =

3kT

2
β2
i ≈

3kT

mc2
→ 〈Ef

Ei
− 1〉 ∼ kT − Ei

mc2

so that if Ei � kT the photon gains energy and Ei � kT it loses
energy→ this is a thermalization process



Kompaneets Equation
• Radiative transfer or Boltzmann equation

∂f

∂t
=

1

2E(pf )

∫
d3pi

(2π)3

1

2E(pi)

∫
d3qf
(2π)3

1

2E(qf )

∫
d3qi

(2π)3

1

2E(qi)

× (2π)4δ(pf + qf − pi − qi)|M |2

× {fe(qi)f(pi)[1 + f(pf )]− fe(qf )f(pf )[1 + f(pi)]}

• Matrix element is calculated in field theory and is Lorentz
invariant. In terms of the rest frame α = e2/h̄c (Klein Nishina
Cross Section)

|M |2 = 2(4π)2α2

[
E(pi)

E(pf )
+
E(pf )

E(pi)
− sin2 β

]
with β as the rest frame scattering angle



Kompaneets Equation
• The Kompaneets equation (h̄ = c = 1)

∂f

∂t
= neσT c

(
kTe
mc2

)
1

x2

∂

∂x

[
x4

(
∂f

∂x
+ f(1 + f)

)]
x = h̄ω/kTe

takes electrons as thermal

fe = e−(m−µ)/Tee−q
2/2mTe

[
ne = e−(m−µ)/Te

(
mTe
2π

)3/2
]

=

(
2π

mTe

)3/2

nee
−q2/2mTe

and assumes that the energy transfer is small (non-relativistic
electrons, Ei � m

Ef − Ei
Ei

� 1 [O(Te/m,Ei/m)]



Kompaneets Equation
• Equilibrium solution must be a Bose-Einstein distribution since

Compton scattering does not change photon number

• Rate of energy exchange obtained from integrating the energy ×
Kompeneets equation over momentum states

∂u

∂t
= 4neσT c

kTe
mc2

[
1− Tγ

Te

]
u

1

u

∂u

∂t
= 4neσT c

k(Te − Tγ)
mc2

• The analogue to the optical depth for energy transfer is the
Compton y parameter

dτ = neσTds = neσtcdt

dy =
k(Te − Tγ)

mc2
dτ



Spectral Distortion

•	Compton upscattering: y–distortion

•	Redistribution: µ-distortion

y–distortion

µ-distortion
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Thermal SZ Effect
•	 Second order Doppler effect escapes cancellation
•	 Velocities: thermal velocities in a hot cluster (1-10keV)
•	 Dominant source of arcminute anisotropies – turns over 
	 as clusters are resolved
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Amplitude of Fluctuations

    




Clusters in Power Spectrum?
� Excess in arcminute scale CMB anisotropy from CBI• 
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Power Spectrum Present



Counting Halos for Dark Energy
•  Number density of massive halos extremely sensitive to the
	 growth of structure and hence the dark energy

•  Massive halos can be identified by the hot gas they contain

Carlstrom et al. (2001)

see Jack Sayers' talk
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• Previously unknown clusters

Staniszewski et al (2008)



Mass-Observable Degeneracy
•	 Uncertainties in bias and scatter cause degeneracies with  
	 dark energy	
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Fully Calibrated
•	 Given a completely known observable-mass distribution dark energy
	 constraints are quite tight (4000 sq deg, z<2)
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Un-Calibrated
•	 Marginalizing scatter (linear z evolution) and bias (power law
	 evolution) destroys all dark energy information 
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Joint Self-Calibration
•	 Both counts and their variance as a function of binned observable
•	 Many observables allows for a joint solution of a mass independent
	 bias and scatter with cosmology 	
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Joint Self Calibration
•	 Power law evolution of bias and cubic evolution of scatter in z
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Hu, Huterer & Smith (2006)

Modified Gravity f(R) Simulations
• For large background field, compared with potential depth, 
 enhanced forces and structure
 

Oyaizu, Lima, Hu (2008)



Hu, L, Huterer & Smith (2006)

Mass Function
• Enhanced abundance of rare dark matter halos (clusters) with
 extra force
 

Schmidt, Lima, Oyaizu, Hu (2008)
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Summary: Lecture III
• Differential gravitational redshifts from evolving structure causes

integrated Sachs-Wolfe (ISW) effect

• Appears on large angles and contributes to quadrupole comparably
to primary

• Tests the microphysics of acceleration: clustering of dark energy,
modified gravity, dark matter interactions

• Compton scattering leads to energy transfer and thermal SZ effect
to second order in velocity

• Unresolved gas clumps generate excess arcminute power

• Resolved clusters provide sensitive test of microphysics of
acceleration through counts if masses calibrated



...setting sail for Cancun...

Thanks to the Organizers


	first: Yes


