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®*Goal: understand origin and evolution of large-scale structure

® Growth of small fluctuations (linear theory)
® Non-linear evolution (simulations)
® Use of galaxy surveys to test cosmological theory (CDM)

*Connection to three outstanding problems in 21st Physics:

® The identity of the dark matter
® The nature of the dark energy
® Origin of cosmic structure
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U B€ € *Galaxy Formation
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. Carlos Frenk

°Institute of Computational Cosmology
University of Durham

*http://star-www.dur.ac.uk/~csf/homepage/GalForm_lectures

*Books:
*Cole & Lucchin: Cosmology
*Peacock: Galaxy Formation
°Linder First Principles of Cosmology

*Padhmanaban Large-scale structure
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UH@S@ *The content of our universe

University of Durham

DARK
75% ENnerGY

NORMAL
0,
4% MATTER

dDark matter = matter that does not emit light at any waveleng




® Radiation (CMB, T=2.726%0.005 °K) Q = 47X

® Massless neutrinos 10 Q =3x10°
® Massive neutrinos Q. =6x 102 (<m_>/ev)
¢ Baryons ., =0.039 £ 0.009
*(of which stars) Q. =0.0023 £ 0.0003
® Dark matter (cold dark matter) Q4= 0.26 +£0.03
® Dark energy (cosm. const. A) Q, =0.70+£0.02

° (aSSU m | ng H u bb I e pa ra metdr'[nstitute for Computational Cosmology
h=0N 72\




*(~90% of the mass of the Universe is dark matter)

)

—> Most of the dark matter is NOT ordinary

(baryonic) matter

—> Weakly interacting massive particles

(WIMPS)
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Observable Universe

*Observable universe

* Inflation theory predicts:
1. Flat geometry (Q'=\’( )

* 2. 3Small ripples in mass
distribution




HOT MATTER

‘K End of Inflation

INFLATION

(False Vacuum)

slightly different times

!
m

*Quantum fluctuations
are blown up to
macroscopic scales
during inflation

Position
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3. THE GROWTH OF DENSITY FLUCTUATIONS - LINEAR THEORY

3.1 Linear Fluctuations

To study the evolution of linear perturbations, we write the density, pressure and velocity fields, p(7, ¢), P(7, ¢) and
u(7, t), as a mean value plus an initially small fluctuation:

p(7:t) = p(t) + 9p(7,t) = p(t)(1 + o(7, 1)), 3.1

where 6 = dp/p
P(7,t) = P(t) + 6P(7,t)

= H(t)7 + v(7, t) (3.2)

I

2|

where Vv is the peculiar velocity. For linear fluctuations, § < 1 and v < Hr.

3.2 The rate of growth equation

For an ideal, non-relativistic fluid, the equations of conservation of mass and momentum are:

9p i

a + V- (pu) =) (3.3)
ou P
K ova=—YY v (3.4)
ot P

where @ is the gravitational potential which, for a self-gravitating fluid, is given by Poisson’s eqn:

3P, tot

c2

V20 = 4G (psot + ) — Ac? (3.5)
where the suffix fof indicates that all matter contributes to the gravitational potential whereas the conservation equa-
tions apply separately to the baryonic fluid and also to any component of non-baryonic dark matter. (Note that for
radiation, 3 Py / 2 = p~ so in the last equation, the P term is related to p~). (For a derivation of the fluid equations,
see eg Binney & Tremaine Galactic Dynamics).



526 0o VzdP 5

a2l T T T TV
where a5

Vig = 4r G0 + 5
Note:

(3.20)

(3.21)

e Eqn (3.20) applies to any component of non-relativistic (cold) matter (P < % pc?); 8 refers to fluctuations in density

and ¢ P in pressure

® ) piot and O Pyot, on the other hand, are the sources of perturbation in the gravitational potential and so refer to the

sum of all components of matter.

o The 2H % term 1s a cosmological drag term. It is the only term where the expansion of the universe comes in. Thus,
the Hubble expansion tends to dampen fluctuations. Without this term, fluctuations would grow exponentially; with

it, growth is a power-law at best.
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3.3 Solution for cold matter (dust)

We will now solve (3.20) for the case where pressure fluctuations are zero. This is known as the “dust solution™ and
corresponds to cold matter. Write:

Ptot = Pm + Pr (3.22)
and set § Pryot = 0. Then, dptot = dpm = pmd. Eqn (3.20) becomes:

6+ 2HS = 4nGppd (3.23)
where the dot denotes the time derivative at constant Z. Using (1.12), we can write this as
% s 3
6+ 2HS — §Hzﬂm5 =0 (3.24)

Let us consider the solution in 3 different situations:

e Matter-dominated case, 2 ~ €2, ~ 1. This is the most important case since it describes the Universe since
recombination until almost the present day. Setting @ = 1in (2.11), we have H? o py, o a3, from which it is easy
to show that H = % Substituting in (3.24),

e 4.9
0+ Qé = @5 =0 (3.25)
The general solution is:
6 =A@)® + Bm)t ! (3.26)

where A and B are constants. The first term is known as the “growing” mode and the second as the “decaying” mode.

e A-dominated; Q5 ~ 1 (4, ~ 0). Although the Universe has not yet reached this state, it is rapidly approaching it.

Eqn (2.11) gives H* = === = const, so (3.24) gives

5+ 2H6 =0 (3.28)

whose solution is

6 = A(T) + B(z)e 2 (3.29)

Thus, the growing mode is no longer growing, but has frozen in at a constant value.

e General case; (2, + 2y = 1. We will not attempt to solve this here, but a feel for the solution may be obtained by
combining the two previous results. We write:

d = 8o(ZT)ag(a, Umo) (3.30)

where g(a, Q,,,0) is a correction factor that modifies the simple scaling of the 2 = 1 case. The factor g is constant at
early times (2 — 1) and scales as 1/a at late times (34 — 1). For Q,, = 1/3, one can show that g — g; = 1.25

J
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*Linear fluctuation
growth rate in
different cosmologies

0 =025, 0,=0.75, w=-0.2

0_=0.25, 0,=0.75, w=—0.8
0_=0.25, 0,=0.75, w=—1.0
Q_=1.0, 0,=0.0, w=0 (Mass only)




3.4 The Jeans mass

Consider fluctuations in the baryon distribution which we will take to be a perfect fluid. Assume that the fluctuations
are adiabatic, ie that the cooling time is long compared with the age of the Universe. Then, 6P = c28p, where c,
is the sound speed. The pressure is greater in overdense regions and this impedes the growth of the fluctuation. The
Jeans mass is derived by comparing the relative strength of gravitational and pressure forces acting on a perturbation.
If, for an adiabatic perturbation, we write:

5P x 8p x P T (3.31)
then, . 5
1 k
VISP = —VioP = %viap — a,js 8p (3.32)
Substitute in (3.20), setting dp = po:
. A 2.2 2
§+2HS = —kagﬁs +4rG {p6+ 3 (%) p&}
.. . k22
b+ 2HS = (d4nGp— =2* )8 (3.33)

Fluctuations can only grow if RHS is positive. This can be seen, for example, by trying a solution of the form
§ o ™%, The resulting algebraic equation is called the dispersion relation. For fluctuations to grow, w must be
imaginary and this requires the RHS of the equation to be positive. Thus fluctuations grow only if their physical

wavelength, A = %, is greater than the Jeans wavelength:

o\ 1/2
Xj =, (G—p> (3.34)

corresponding to masses greater than the Jeans mass:

_dm_ AJ 3_1_ T 1/2]3
My = 5Pm (%) = §7Pm [cs (G—p) (3.35)

e At the epoch of matter-radiation equality, zeq, pnr = prro(a + z)3 is equal to p, = pro(a + z)4‘ This then gives
Zeq = 2.6 x 10*Q0h2. At this epoch, the sounds speed is (%) = % and eqn (3.35) gives,

My =35 x 10%(Qr*) 2 M, (3.36)

e Using values appropriate for the period after recombination (and recalling that 5  p o a2 and T x 2 x a™1)
gives:

My ~ 542 M, (3.37)

J



3.5 The Meszaros effect

A perturbation in a collisionless, non-relativistic matter component (eg cold dark matter) experiences reduced growth
during the period when the Universe is dominated by a relativistic component, eg radiation. To see this, let us consider
eqn (3.20) for a non-relativistic matter component, which we will take to have P = § P = 0 (i.e. cold dark matter).
The total mean density is 7,,; = P, + 2 (With p, > p,,.). The perturbed (non-relativistic) density is 6,, = &5,
The relativistic (radiation) field is assumed to be uniform, é, = 0, 0 dptot = dpr = p,,,. Eqn.(3.20) then becomes
(droping the overbars in p, etc for clarity):

6+ 2HS — 47 Gpppd =0 (3.38)
Changing variables to
y =P @ (3.39)
Pr Qeg

where a4 is the expansion factor at the epoch of matter - radiation equality. Using the Friedmann equation (2.6) with
k=0,A =0and p = pnr + pr and setting % = d%, eqn (3.37) becomes:

d* 243y 45 3y
d?y  2y(1+y)dy 2y(1+y)

=0. (3.40)

which, as usual, has a growing and a decaying solution. The growing solution is

5ol oy (3.41)
Before 24 (y < 1), the growing mode is practically frozen. The total growth in the interval ¢ = 0 — ¢4 is
Si(y=1) 5
= (3.42)
Sy =0) 2
After z.4, the solution rapidly matches the growth rate in a matter-dominated Einstein-de-Sitter model,
0i(y>>1) xy xax §2rd (3.43)

Physically, the explanation for the Meszaros effect is this. At early times, the dominant energy in radiation
drives the Universe to expand so fast that the matter has no time to respond and ¢ is frozen. As the radiation becomes
negligible, growth increases smoothly to the behaviour appropriate in an Einstein-de-Sitter universe.

3.6 Free streaming

If a perturbation enters the horizon when the dark matter is still relativistic, then that perturbation is quickly damped
because of free streaming: the particles which are moving at relativistic speeds in 3D simple move out of the high
density part of the perturbation which is then erased. For thermal particles, the cut-off wavelength is,

AFs o my (3.44)

where m x is the dark matter particle mass
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5. THE POWER SPECTRUM OF DENSITY FLUCTUATIONS

In this section, we collect the results of the preceeding section to arrive at a simple statistical description of the density
and velocity fluctuation fields.

5.1 Mathematical background

The density field, 6(z, t), can be written as a sum of plan waves in Fourier space:
1 o
8(7, ¢t :—/5 k,t)e* T d3k
(:E, ) (27T)3 k( ? )6
5u(E, ) = / 5(z, t)eFTd3e 5.1

The fact that 6(z, t) averages to zero, < 4(z, t) >= 0, implies that J;(0) = 0.

0, 1s usually assumed to be a Gaussian random field which means that the waves have random phases. In this
case, the field can be specified entirely by its variance or power spectrum:

— — 12
P(E) = |d(E)|

(5.6)

For an isotropic distribution, the power spectrum, averaged over all possible realizations, must be independent of

direction, < P(k) >= P(k). Often, P(k) is approximated as
P(k) o k™ .7

In practice, P(k) is not a power-law, ie n varies with scale.

The density and mass fluctuation within a region of volume V' is defined as:

Op _ 0t L Fensas
R / 5(@)d% (5.8)

If 5, is Gaussian, so is M /M. The average density fluctuation (averaged over the whole of space) is zero:

oM
<ﬁ> =0 (5.9

It is (relatively) easy to find the mean squared value of M /M:

o3 (M) = <<6WM>2> = mfP(k)W(E; V)d3k (5.10)




1 34n -
o? x / Kk o (1) o« M~ F) (5.14)

0 T

since M o< 2%, provided n > —3. We will express the present-day value of &, assuming linear evolution, as:

S MN\T® _3+n

This gives the relative amplitude of fluctuations on different scales according to linear theory. Of course, o scales
with time in the same way as 9, ie as in (4.14):
o = ggpga (5.16)

5.2 Dark matter power spectra

Density perturbations are thought to be generated by quantum fluctuations during inflation. These are adiabatic,
Gaussian perturbations. As the universe inflates, the perturbation is stretched beyond the horizon. Once inflation
ends, however, perturbations eventually re-enter the horizon. By self-similiarity arguments, when they do so, they all
have the same amplitude, independently of wavelength (or mass). Smaller fluctuations re-enter the horizon first.

Let us compute the shape of the power spectrum at some time, say, ¢,... Consider a fluctuation that enters the
horizon in the matter-dominated regime. Since o 6§, 07 /0pec = a1 /arec, Where the subscript H refers to horizon
crossing. Thus,

¢ 2/3
oo = a5 2 = o (22 (5.17)
ag to
where o 7 =const (ie independent of mass). During this time, the horizon mass scales as
My < py(ctyg)® <ty (5.18)
because p o £~2 in the matter-dominated regime. Since at aenter, M >~ My,

Oree <t S o M3 (5.19)

Comparing with (5.15), E’JFT” = %, SO

2
a=z oF =1 (5.20)

This is called the Harrison-Zeldovich spectrum,|P(k) o k.

gy




*Non-baryonic dark matter

candidates
* Type candidate mass
hot neutrino a few eV
warm Sterll_e keV-MeV
neutrino
axion 10-5eV/-
cold

neutralino | >100 GeV
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It 1s usual to write

P(k) = T?(k)k (5.21)

where T'(k) is the transfer function.
Cold dark matter (CDM).

Density fluctuations cannot grow during the radiation-dominated era and so the power spectrum is maintained
at the value at horizon crossing. Thus ¢ — const and, from (5.16), « — 0, so n — —3.

For cold dark matter, a fitting formula is:

In(1 + 2.34¢)

Teom(k) = — 55 i [1+3.89g + (16.1¢)% + (5.46¢)% + (6.71¢)*]~/* (5.22)
where "
qg= fh—lMpc (5.23)
and the shape parameter I
I = Qmoh (5.24)

Hot dark matter (HDM)

This corresponds to the case where the dark matter particles are still relativistic at matter-radiation equality. In
this case, the dark matter particles free-stream out of the perturbations as soon as they come into the horizon and so
fluctuations are erased until such time as the particles cease to be relativistic. The cut-off wavelength 1s,

ARS X m}}l (5.25)

where m x 1s the mass of the hot dark matter particle. A fitting formula for HDM is:
Cupm(k) ~ e=3/91-21¢° (5.26)

The power spectrum (or, more precisely, k3|6 |?) for CDM and HDM is shown in Figure 1. Accurate transfer functions
may be obtained using the programme on

http://www/physics.nyu.edu/matiasz/CMBFAST/cmbfast.htm]



{’ E§@€ Q¢ | The origin of cosmic structure

*|nflation

{ |8k|20c K"

n

Gaussian amplﬂ!ﬂies

®—> FLAT UNIVERSE

PS 'superclusters clusters galaxies
6p/p2 B ] i.‘lli ] \1' 1 I\II [T i—
.P( 0 — .Rh(teq) °cold ]

N’_k) - °Meszgros _

= damping -
» ]
\Q/D - —
'2 — —

__4 L —
- *Free .
- si;%mm& -
—8 1 1 ] l S S S | I 1| J. | I—
—2 ~1 0 m "1
log(k MpC/Qh ) *Small

°Large scales

scales

P (k)=Ak"

S e T feT
function

* Hot DM (eg ~30 ev
neutrino)

- Top-down formation

* Cold DM (eg
~neutralino)

- Bottom-up

;ﬁtlitnutvg ’j;o’r\ Eemy‘tf‘ional Cosmology

\I LAY @ \Y] | II\IUII



l

llIllllIllllI]‘llllllllll

-3 -2 -1 0 1 2
log,,(k/hMpc-1)

Institute for Computational Cosmology




The microwave background radiation
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