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The Large Scale Structure of the Universe

Planck SDSS
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Primordial Tilt

ns

1992 (COBE): ns = 1± 0.6

2009 (WMAP5): ns = 0.963± 0.014
2001 (Max+Boom): ns = 1.03± 0.09

2013 (Planck+): ns = 0.9603± 0.0073
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Outline

•  the panorama of gravitation

•  the cosmological arena

•  cosmological linear perturbations

•  what data to look at

•  the future
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Einstein Gravity!

Metric of space time!

Curvature!

1

16�G
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d4x

⇥
�gR(g) +
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�gL(g,matter)
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Lovelock’s theorem (1971) :“The only second-order, local gravitational field equations 
derivable from an action containing solely the 4D metric tensor (plus related tensors) are the 
Einstein field equations with a cosmological constant.”
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“I think the best viewpoint is to pretend there are 
experiments and calculate. In this field we are not pushed 
by experiments- we must be pulled by imagination”  

R. Feynman
GR1: Chapel Hill 1957
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Modified Gravity

New degrees of freedom

Higher dimensions

Higher-order

Non-local

Scalar

Vector

Tensor

f

✓
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◆

Some degravitation 
scenarios

Scalar-tensor & Brans-Dicke

Galileons
Ghost condensates

the Fab Four

Coupled Quintessence
f(T)

Einstein-Cartan-Sciama-Kibble

Chern-Simons

Cuscuton

Chaplygin gases

Einstein-Aether

Massive gravity
Bigravity

EBI

Bimetric MOND

Horndeski theories Torsion theories

KGB

TeVeS

General RμνRμν, 
☐R,etc.f (R)

Hořava-Lifschitz

f (G)

Conformal gravity

Strings & Branes

Generalisations 
of SEH

Cascading gravity

Lovelock gravity

Einstein-Dilaton-
Gauss-Bonnet

Gauss-Bonnet

Randall-Sundrum Ⅰ & Ⅱ DGP

2T gravity

Kaluza-Klein

arXiv:
1310.1086
1209.2117
1107.0491
1110.3830

Lorentz violation

Lorentz violation

Tessa Baker 2013
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Initial Conditions

Reionization
Dark ages

(“EoR”)

Recombination
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Planck XXII

Primordial Tilt

Primordial Gravitational 
Waves

Initial Conditions
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Planck XXII

Primordial Tilt

Primordial Gravitational 
Waves

Initial Conditions
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Acceleration

Where strange things 
do happen...

Planck XVIII
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Psaltis 2013
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An agnostic view: lessons from PPN

Expand around weak-field metric in a set of 10 parameters:
ɣ,  β,  ξ,  α1,  α2,  α3,  ζ1,  ζ2,  ζ3,  ζ4

Perform similar expansion in non-GR theory. 
Map theory onto parameters.

� =
1 + !BD

2 + !BD
E.g. in Brans-Dicke theory:

`Parameterized 
Post-Newtonian’

(Will, Nordvedt & Thorne)

�g00(r) = 1� 2GM

c2r
+ 2(� � �)

✓
2GM

c2r

◆2

grr(r) = 1 + �
2GM

c2r
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Lessons from PPN
γ β ξ α1 α2 α3 ζ1 ζ2 ζ3 ζ4

Einstein (1916) GR

Bergmann (1968), Wagoner (1970)

Nordtvedt (1970), Bekenstein (1977)

Brans-Dicke (1961)

Hellings-Nordtvedt (1973)

Will-Nordtvedt (1972)

Rosen (1975)

Rastall (1979)

Lightman-Lee (1973)

Lee-Lightman-Ni (1974)

Ni (1973)

Einstein (1912) {Not GR}

Whitrow-Morduch (1965)

Rosen (1971)

Papetrou (1954a, 1954b)

Ni (1972) (stratified)

Yilmaz (1958, 1962)

Page-Tupper (1968)

Nordström (1912)

Nordström (1913), Einstein-Fokker (1914)

Ni (1972) (flat)

Whitrow-Morduch (1960)

Littlewood (1953), Bergman(1956)

1 1 0 0 0 0 0 0 0 0

γ β 0 0 0 0 0 0 0 0

γ β 0 0 0 0 0 0 0 0

γ 1 0 0 0 0 0 0 0 0

γ β 0 α1 α2 0 0 0 0 0

1 1 0 0 α2 0 0 0 0 0

1 1 0 0 c0/ c1 − 1 0 0 0 0 0

1 1 0 0 α2 0 0 0 0 0

γ β 0 α1 α2 0 0 0 0 0

ac0 / c1 β ξ α1 α2 0 0 0 0 0

ac0 / c1 bc0 0 α1 α2 0 0 0 0 0

0 0 0 -4 0 -2 0 -1 0 0

0 -1 0 -4 0 0 0 -3 0 0

λ 0 − 4 − 4λ 0 -4 0 -1 0 0

1 1 0 -8 -4 0 0 2 0 0

1 1 0 -8 0 0 0 2 0 0

1 1 0 -8 0 -4 0 -2 0 -1

γ β 0 − 4 − 4γ 0 − 2 − 2γ 0 ζ2 0 ζ4

-1 β 0 0 0 0 0 0 0 0

-1 1 0 0 0 0 0 0 0 0

-1 1 − q 0 0 0 0 0 ζ2 0 0

-1 1 − q 0 0 0 0 0 q 0 0

-1 β 0 0 0 0 0 -1 0 0
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Lessons from PPN
Parameter Bound Effects Experiment

γ − 1 2.3 x 10 − 5 Time delay, light 
deflection Cassini tracking

β − 1 2.3 x 10 − 4 Nordtvedt effect, 
Perihelion shift

Nordtvedt 
effect

ξ 0.001 Earth tides Gravimeter 
data

α1 10 − 4 Orbit polarization Lunar laser 
ranging

α2 4 x 10 − 7 Spin precession Solar alignment 
with ecliptic

α3 4 x 10 − 20 Self-acceleration Pulsar spin-
down statistics

ζ1 0.02 - Combined PPN 
bounds

ζ2 4 x 10 − 5 Binary pulsar 
acceleration PSR 1913+16

ζ3 10 − 8 Newton's 3rd law Lunar 
acceleration

ζ4 0.006 - Usually not 
independent
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http://en.wikipedia.org/wiki/Cassini%E2%80%93Huygens#Tests_of_Einstein.27s_Theory_of_General_Relativity
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http://en.wikipedia.org/wiki/Lunar_Laser_Ranging_experiment
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http://en.wikipedia.org/wiki/PSR_1913%2B16


18

The Process
Theory Space

Observables

Regime

Parametrization
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The Universe: background cosmology

19

ds

2 = a

2
�µ⌫dx

µ
dx

⌫

G↵� = 8⇡GT↵� H2 =
8⇡G

3
a2⇢

FRW equations

Any theory (modified gravity or otherwise)

G↵� = 8⇡GT↵� + U↵�

⇢X(⌧), PX(⌧)
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The Universe: background cosmology
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Only measure            and H(z) ⌦K
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The Universe: large scale structure
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Linear Perturbation Theory

22

(10� 10, 000h�1Mpc)

�G↵� = 8⇡G�T↵�

⇢ ! ⇢(⌧)[1 + �(⌧, r)]
(�̂,  ̂)

Gauge invariant
Newtonian potentials

�̂ =
1

k

⇣
˙̂�+H ̂

⌘

Diffeomorphism invariance 

ds

2 = a

2(�µ⌫ + hµ⌫)dx
µ
dx

⌫

2~r2�̂� 6Hk�̂ = 8⇡Ga2⇢�(gi)

2k�̂ = 8⇡G(⇢+ P )✓(gi)

�̂�  ̂ = 8⇡Ga2(⇢+ P )⌃(gi)

�G(gi)
00 :

�G(gi)
0i :

�G(gi)
ij :

�G(gi)
ii(+          equation)
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Extending Einstein’s equations

23ArXiv:1209.2117

Linear in �̂, �̂, �̂, ˙̂�

�Gµ⌫ = 8⇡G�TM
µ⌫ + �Uµ⌫

Skordis 2010
Baker, Ferreira, Skordis 2012
Bloomfield, Flanagan, Park, Watson 2012
Gleyzes, Gubitosi, Piazza, Vernizzi 2013
Pearson, Battye 2011
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Extending Einstein’s equations

24ArXiv:1209.2117
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Extending Einstein’s equations

25ArXiv:1209.2117
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Extending Einstein’s equations

26ArXiv:1209.2117
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Integrability
Most general action with 1 d.o.f. (use unitary gauge)

Expand to 2nd order

where:

Baker, Gleyzes, Ferreira, Vernizzi in prep

The          
are functions of 
time only.

LX , LXY
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Extending Einstein’s equations

28ArXiv:1209.2117

Scalar-Tensor Galileons K.G.B. DGP Einstein-Aether

f(R) gravity The Fab Four Quintessence EBI Horava-Lifschitz

f(G) theories K-essence Dark fluids TeVeS G-inflation
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What about the non-linear regime?
N

modes

/ k3Much better sampling of density fieldPros: 

33
Lombriser et al 2012

F (R) = 1 + f(R)

29
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What about the non-linear regime?
Baryon, feedback and bias 

Semboloni et al 2012
Tuesday, 14 January 14



And now to what we observe:
 Light vs Matter

31

• For a perturbed line element of the form:

the equations of motion are:

ds

2 = a

2(⌧)[�(1 + 2�)d⌧2 + (1� 2 )�ijdx
i
dx

j ]

1

a

d(av)

d⌧
= �r�

dv

d⌧
= �r?(�+ )

(non-relativistic particles)

(relativistic particles)
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What we observe.

~v

�,~v

�, 
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Large Scales: the problem with cosmic variance

100 101 102

`
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2 ]

Ge↵ = G0

Ge↵ = G0(1 + 0.1 ⌦⇤)

Ge↵ = G0(1 � 0.1 ⌦⇤)

Ge↵ = G0(1 + 0.2 ⌦⇤)

Ge↵ = G0(1 � 0.2 ⌦⇤)

WMAP

Zuntz et al. 2011

ISW- late time effects
on large scales /

Z
(�̇+  ̇)d⌘
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Ross et al (BOSS) 2012

Systematic effect
 due to stellar

 densities

Large scales: the problem with the Galaxy
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Large Scales:Tomography of Neutral Hydrogen

Switzer et al 2013

First attempts: the GBT

Camera et al 2013
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Not so large scale: “quasi-static” regime
A preferred length scale- the horizon

Focus on scales such that k⌧ � 1

Most surveys  300h�1Mpc

H�1 ⌘
✓
ȧ

a

◆�1

/ ⌧ ' 3000h�1Mpc

�k2� = 4⇡Gµa2⇢�

� = �

Caldwell, Cooray, Melchiorri, 
Amendola, Kunz, Sapone, 
Bertschinger, Zukin, Amin, 
Blandford, Wagoner, Linder, 
Pogosian, Silvestri, Koyama, 
Zhao, Zhang, Liguori, Bean, 
Dodelson

Note: not applicable to CMB!
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Not so large scale: “quasi-static” regime
The “quasi-static” functions reduce to a simple form

where   

Goal: to use k and z dependent measurements of            to 
constrain PPF functions

(�, µ)

Baker et al 2012
Silvestri et al 2013

pi = pi[LK , LKK , · · · ]
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Growth of Structure

38

f satisfies a simple ODE

df

d ln a
+ qf + f2 =

3

2
⌦M⇠

with q =
1

2
[1� 3w(1� ⌦M )] and ⇠ =

µ

�

f

z

f(k, a) =
d ln �M (k, a)

d lna

Growth rate
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Growth of structure: Redshift Space Distortions

39
Guzzo et al 2008
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Macaulay et al
ArXiv:1303:6583f(k, a) =

d ln �M (k, a)

d lna
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Weak Lensing
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Reyes et al 2010!

Galaxy Weak Lensing

42

Simpson et al 2012 
(CFHTLens)

Reyes et al 2010 
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State of Play in 2014

43

no constraints on GR

however...
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The Future

44
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The Future is now

45

Data Type Now Soon Future

Photo-z:LSS
(weak lensing)

DES, RCS, KIDS HSC LSST, Euclid, SKA

Spectro-z
(BAO, RSD, ...)

BOSS MS-DESI,PFS,HETDEX, 
Weave Euclid, SKA

SN Ia
HST, Pan-STARRS, 
SCP, SDSS, SNLS

DES, J-PAS JWST,LSST

CMB/ISW WMAP Planck

sub-mm, small scale 
lensing, SZ

ACT, SPT
ACTPol,SPTPol, 

Planck, Spider, Vista
CCAT, SKA

X-Ray clusters
ROSAT, XMM, 

Chandra
XMM, XCS, eRosita

HI Tomography GBT
Meerkat, Baobab, 

Chime, Kat 7 
SKA
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The Future: Redshift Space Distortions

Percival 2013
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Theory parameter now future

Brans-Dicke 1/! 0.006 4.19⇥ 10

�4

Einstein-Aether c1 few 0.222

c3 few 1.736

↵ few 0.244

DGP 1/(rcH0) 0.075 0.004

Model Dependent Constraints
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Summary

48

• The large scale structure of the Universe can be used to test gravity 
(different eras probe different scales).

• There is an immense landscape of gravitational theories (how credible 
or natural is open for debate).

• We need a unified framework to test gravity  (“PPF”modelled on PPN).

• Focus on linear scales at late times (for now).

• Non-linear scales can be incredibly powerful but much more 
complicated

• Need new methods and observations to access the really large scales 
(is HI tomography the future?).

• Current measurements are not constraining.

• There are a plethora of new experiments to look forward to.
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