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...10 take home

@ A better understanding of the gas’rrophyswsand the
baryon-dark matter inferaction is necessary to
acquire before claiming for issues at small scales

o Key tests for LCDM: discovery of the predicted
abundant substructure and the halo friaxiality

@ The dark sector is likely much more complex than
our simple models, with |’rs own (self)interactions and
particle zoo. [Etsmyy SIDM is promising.




The emergence of the CDM scenario

Critical issues in Astronomy/Cosmology during decades

(R YT RN CIC UL IRiglull /|® kinematics of galaxies and
observations (under GR and [BCEEEN QRN I
Newton dynamics) in conflict with [k cosmological determinations of
Y o e IRy Py |Caryonic and dynamical mass
of gravitational forces densities: (y<<Qayn +

2. Galaxy disks are dynamically
unstable, but today ~80% of]
galaxies are of disk type |

3. Silk damping of baryonic
fluctuations In the hot universe
erases perturbations of scales
<10"3 Msun --> no seeds for galaxy

formation!
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Critical issues in Astronomy/Cosmology during decades

(R YT RN CIC UL IRiglull /|® kinematics of galaxies and
observations (under GR and [REKCSCEVEIONC(N NI
N RN R R il Byl (> Ccosmological determinations of
Y o e IRy Py |Caryonic and dynamical mass
of gravitational forces densities: (y<<Qayn +

2. Galaxy disks are dynamically
unstable, but today ~80% of
galaxies are of disk type

baryonic DARK MATTER.

DM should be COLD to avoid free-
streaming (WARM DM could work
well too).

» Dominant fraction of non-

3. Silk damping of baryonic
fluctuations In the hot universe
erases perturbations of scales
<10"3 Msun --> no seeds for galaxy

formation!




-Observations: Q,,~0.3 but first peak
in the CMBR anisotropies ;=1




| (A)CDM A cosmological and cosmogonical scenario developed b

iteratively on the basis of astronomical observations and within the
context of the standard physical theories and models.

Fundaments and predlctlons

. l

.'5 | % i
"‘ Homogeneous‘umverse ﬁ Inhomogeneltles

Losmodgony

" Big Bang Theory (GR + cosmological ‘Gravitational paradigm + relativistic hot @&

o principle + SM of particle physics)

‘Inflationary model (Gr +quantum field i A
theory + supersymmetry?) S *Gravitational collapse and Galaxy

| Formation (non-linear and complex
B gastrophysics, yet in diapers)

| Consistent with the BET and Inflation [l - i
| predictions: 8 Amazing consistency with:

1) Redshift of galaxies (expansion), 2)
abundances of light elements ( ),

3)CMBR, 4) Flat geometyr Q,;=1.




Large scale structure (local and at high z)

LSS from N-body pure DM simulations
Using galaxies as tracers of halos

The gravitational (collisionless )
non-linear evolution produces the
cosmic web of walls, filaments and

voids as observed




Large scale structure (local and at high z)
LSS from N-body pure DM simulations

The gravitational (collisionless )
non-linear evolution produces the
cosmic web of walls, filaments and

voids as observed

Excellent agreement w/observations of LSS
at a quantitative level (correlation functions,
bower spectrum, etc.)
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Large scale structure (local and at high z)

LSS from N-body pure DM simulations

Excellent agreement w/observations of LSS
at a quantitative level (correlation functions,
bower spectrum, etc.)

Galaxy clustering in SDSS at z~0
agrees with ACDM simulations
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10'f DM .
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projected
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Conroy,
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Kravtsov
2006, ApJ 647, 201
10° . IS : |
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The gravitational (collisionless ) PRSI ARpAREEN

non-linear evolution produces the

cosmic web of walls, filaments and
voids as observed




Large scale structure (local and at high z)

LSS from N-body pure DM simulations

Excellent agreement w/observations of LSS
at a quantitative level (correlation functions,
bower spectrum, etc.)

and at redshift z~1 (DEEP2)!

10°

M;-Slog(h)<-19.0
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10°} ¥ DM halos

projected FAINT - @

—~
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‘_.D.
correlation @3
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The gravitational (collisionless ) Projected separation

non-linear evolution produces the
cosmic web of walls, filaments and
voids as observed




Large scale structure (local and at high z)

LSS from N-body pure DM simulations

and at z~4-5 (LBGs, Subaru)!!
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The gravitational (collisionless )

non-linear evolution produces the
cosmic web of walls, filaments and
voids as observed




Fully consistent with the observed CMBR anisotropies
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CDM halo mass function = observed cluster/group mass function

At difference of galaxies, the halo masses of clusters can be measured directly

(velocity dispersions, hot gas dynamics, lensing)
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The Tully-Fisher relation: Vpy, vs M

an imprint of the ~flat region of the power spectrum of density perturbations

Firmani & Avila-Reese 00; Avila-Reese+ 08
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(A)CDM, the simplest case: A cosmological and cosmogonical b

scenario built up itervatively on the basis of astronomical observations and
within the context of the standard physical theories and models.

Fundaments and predlctlons

~3~ %rd A | i
Homogeneous unlverse ﬁ | InhomogeneltleS

Losmodgony

*Gravitational paradigm + hot plasma

¢DIg Bang Sheona o e nigia! relativistic thermo-hydro-dynamics

& principle + SM of particle physics)

‘Inflationary model (Gr +quantum field

theory + supersymmetry?) *Gravitational colllapse and Galaxy

1 Consistent with the BBT and Inflation
| predictions:

. : : - tion 4) Tully-Fisher reictiems
1) Redshift of galaxies (expansion), 2) P o :
abundances of light elements ( ) 5) Galaxy properties and correlations?,

9 satellite distributions?, inner structure and
3)CMBR, 4) Flat geometyr Q=1. dynamics of galaxies? <-- POTENTIAL
) SMALL SCALE ISSUES!




*Gaussian density perturbations, *scale invariant PS

without a cut-off, *dominate collisionless, non-interacting, vrms=0 particles.
It's the simplest case from the point of view of cosmic structure formation
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*Gaussian density perturbations, *scale invariant PS

without a cut-off, *dominate collisionless, non-interacting, vrms=0 particles.
It's the simplest case from the point of view of cosmic structure formation
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*Gaussian density perturbations, *scale invariant PS

without a cut-off, *dominate collisionless, non-interacting, vrms=0 particles.
It's the simplest case from the point of view of cosmic structure formation
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LCDM cosmogony: *Gaussian density perturbations, *scale invariant PS
without a cut-off, *dominate collisionless, non-interacting, vrms=0 particles.
It's the simplest case from the point of view of cosmic structure formation
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Genetic code for cosmic structure formation: scales

M [Mg)]
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A%(k) = 4n(k/27)>P(k), the linear power spectrum of density fluctuations at z = 0. The solid line is the canonical cold DM



Genetic code for cosmic structure formation: scales

large intermediate small
. ( . . ) .
linear, H-Z shape  quasi-linear, bend strongly non-linear, ~flat PS
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|. The cusp-core problem

NFW Density Profile Pseudo-isothermal Density Profile
1.5} | sclale radilusé 1 1.5 | core Iradius ' Controversy since late
z 1 ' 2 1 - 90’s. Observations
£ osf S osf ' improved, the problem
2 o} 2 o remains but less stringent
9 o5l . 9 o5l i - (e.g., de Blok+05,08; Strigari
4 Cusp A 4 COre | +08; Kuzio de Naray+08,1 I;
0 05 1 15 2 0 0.5 1 1.5 2 Oh+1 [; Salucci+12)
Log Radius Log Radius

: LSB galaxies e.g., Firmani+01, MNRAS
RCs of DM-dominated 9 -

galaxies (LSBs & dwarfs)
are supposed to trace
the halo gravitational
potential

0
\
:
g

:
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However: 1) If the disk is not axisymmetric/non-circular motions (e.g., bar) and
there are pressure gradients: V¢ # Vo (Ve accounts for other contributions!)

. (alnp 'dlno")

TR

2) If the halos is triaxial, V¢ is larger and the central mass is underestimated

Valenzuela+2007: Simulated Barred Dwarf Irregular Galaxy: Realistically Including all the
kinematis and pressure effects. Cuspy Halo. 2% Mdisk/Mnaio . 60 pc resolution.

Stellar Component

Gas Component (T<15000 K)

¢




However: 1) If the disk is not axisymmetric/non-circular motions (e.g., bar) and
there are pressure gradients: V¢ # Vo (Ve accounts for other contributions!)

. (alnp 'dlno")

SnR T ImR

2) If the halos is triaxial, V¢ is larger and the central mass is underestimated

Valenzuela+2007: Simulated Barred Dwarf Irregular Galaxy: Realistically Including all the
kinematis and pressure effects. Cuspy Halo. 2% Mdisk/Mnaio . 60 pc resolution.

Stellar Component

Gas Component (T<15000 K)
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Besides deviations from axisymmetry and circular motions,

*the degeneracies (e.g., between M/L ratio and core slope) are too strong to
make a constraint by the kinematics alone: stellar pop. synthesis helps.
egaseous and stellar kinematics are often different, giving different constraints

Integral field spectroscopy :
(2D stellar/gaseous maps) J N s

O O 0 000 O @G
O 0@ O GCll xO?Oz;
OOOOOOO );

Example: | N ';‘-’*g"‘cf AL

QQ‘ , A
RO O O

NGC2974 -the prototype of oooqﬁ CHERRE R O © O

/ O O O
cored dwarf galaxy (Simons+03, Ha oooi)ogo g o s
; : OO | FOO
kinematics) 70100 o ,_j*fg ; O %Ofooo
e : o ©

O &0
) O

VIRUS-P data + Jeans Anisotropic
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HER1AdUH
/Error 1, (normalized)
/Error f, (normalized)

-303 08

Adams et al., 2012

oStellar kinematics + stellar pop. synthesis: slope=0.9 £0.15 (core

ruled out at 20!!!)
*Gaseous kinematics (slope~0) can be made compatible with stellar

one after taking into account gas motions
* |0 more dwarfs in study: a cusp seems to be favored in most of the

cases (Adams+14, in prep), but some cores are also present.




2a. The missing satellite problem

o CDM
—  ACDM
A MW/M31
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R<200h-'kp:

L)

o0
V., (km/s) Klypin+ 99

Smaller structures collapse earlier and some of them
survive as sub-halos within larger halos. A nhumerous population

of subhalos is predicted (e.g., ~1000 withV:>10 km/s in the MW, or
2x10° with M>10*Mo)



—&— VL subhalos
m All MW dwarfs
- 0ld MW dwarfs

N > v,
o
o

predicted
number of sat’s
accounting for
photoionization
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Simon & Geha 07

SDSS discovered ~15 Galaxies in subhalos of

ultrafaint dwarfs. LSST and ~ Vc<30 km/s are naturally

GAIA may discover more.  suppressed by UV radiation
from reionization!



Six Aquarius MWh-sized simulations: there are many subhalos with
V>30 km/s that are not seen in the MWV: they are too big to not

forming galaxies (Boylan-Kolchin+11,12)
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Six Aquarius MWh-sized simulations: there are many subhalos with

V>30 km/s that are not seen in the MWV: they are too big to not
forming galaxies (Boylan-Kolchin+11,12)

dark subhalos?

T LI | '

| 2.19 x10"2 M,

Caveats

[km /s]

e|]s the MW + sat’s an

exceptional system!?
(Purcell & Zentnerl?2)

e|s the MWV halo mass
<|0'2 Mo? (Wang+12)

circ [km/ S]

Can we have statistics
for many galaxies!?




Rodriguez-Puebla+2012, 2013a, ApJ: Semi-empirical model of galaxy-
(sub)halo connection and halo occupation -->

A mock catalog of 2 10 central galaxies, each one with their satellites (by

construction it reproduces the observed cen/sat GSMFs & 2-point corr. functions).
Select those centrals with MW mass (logMs=10.74+0.1): ~41000 gal’s

Rodriguez-Puebla+2013b, ApJ 773,172

1< rTTr T rrr T T i It's an extension
54 : of observations
'—Q 1 1 ----------- .1;1__.':'_- s =
z .......... O 2 o et e o e e em L <€
e
= 7 logMh= 12.31+ 0.27
» 10 /\ -
9 3
g satellite masses:
‘;_': m.>2.5x10’M
9 alo mass dis¢ribution | < > ©
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The inner dynamics of the satellites

We have 41K ‘quasi-observed’ MW systems. By construction, there is
not a subhalo-satellite abundance problem for the LCDM, BUT...

| | | | I | | | | | | | | I | I 4 ) )
Satellites | Halo/subhalo max. circular velocity

Centrals _____ _ .
100 /{ — vs central/satellite stellar mass

f
f”ﬁ/ ?

v_.. [km s™!]

10 11 1 1 I 1 1 1 I 1 1 1 I 11 1
7 8 9 10

log (stellar mass) [Mg]

Rodriguez-Puebla+2013b, Ap] 773,172



The inner dynamics of the satellites

We have 41K ‘quasi-observed’ MW systems. By construction, there is
not a subhalo-satellite abundance problem for the LCDM, BUT...
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The inner dynamics of the satellites

We have 41K ‘quasi-observed’ MW systems. By construction, there is
not a subhalo-satellite abundance problem for the LCDM, BUT...
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satellite dwarf galaxies (Geha
+2006)
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The inner dynamics of the satellites

We have 41K ‘quasi-observed’ MW systems. By construction, there is
not a subhalo-satellite abundance problem for the LCDM, BUT...

M 1 1 1 | I D | 1 | I | 1
| I I

Halo/subhalo max. circular velocity

100 vs central/satellite stellar mass

X Observations: isolated and

Satellites PY
X Centrals

Rodriguez-Puebla+2013b, Ap] 773,172
v__ [km s!]

X TF: A-R+08 - satellite dwarf galaxies (Geha
{s::ytfx problem’ 2;;”8: G.+06 o +2006)
e w

. T " | symbols = MW (massive) satellites
7 8 9 10

log (stellar mass) [Mg]

being satellite could make the difference



3.The Downsizing problem

From empirical inferences: the smaller the galaxies, the latter they
assemble on average their stellar masses, opposite to the CDM
halo trend (Firmani & Avila-Reese | 0; Behroozi+ | 3; Leitner |2; Moster+13)

-~ - Halo MAHs Halo and stellar mass growth histories
— Stellar MAHs &

(See Gonzalez-Samaniego’s poster)



3.The Downsizing problem

From empirical inferences: the smaller the galaxies, the latter they
assemble on average their stellar masses, opposite to the CDM
halo trend (Firmani & Avila-Reese | 0; Behroozi+ | 3; Leitner |2; Moster+13)

-~ - Halo MAHs Halo and stellar mass growth histories
— Stellar MAHs &

————— Small halos assembled half

their masses earlier on average

than large halos (hierarchy)

(See Gonzalez-Samaniego’s poster)



High-resolution hydro/N-
body simulations of low-
mass galaxies:

Rotating disks with
nearly flat rotation

curves, realistic
structures and ISM

H-ART code: Colin+10; Avila-Reese+1 I; o
properties!

Gonzalez-Samaniego+ 1 4

GADGET code: de Rossi,Avila-Reese+ | 3
Follow the observed

scaling relations

Strong SN-driven temperature velocity
outflows. ue i 000 0.0250
7
IGM: infalling and |’
outflowing gas o 10
1 2 F
SN-feedback and SF N 2 *
. o 4 N
processes delay )" 3128
slightly SF as less |uo’ '
525

massive the halos are
(downsizing)... A
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Evolution of the stellar-to-halo mass ratio

de Rossi,Avila-Reese+ [ 3

——r— MWe-sized gal’s: Ms grows as My

low-mass gal’s: Ms growth is delayed
w.r.t. to the early halo growth
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Evolution of the stellar-to-halo mass ratio

de Rossi,Avila-Reese+ [ 3
_I | IIIIIIIIIIIIIII_

MW-sized gal’s: Ms grows as M

0.010¢

low-mass gal’s: Ms growth is delayed
w.r.t. to the early halo growth

Y v |
0.001 2 15N . 1 Empirical inferences

I
l % 3 4
1 4+ z

...BUT not enough as observations suggest; Ms growth does
not detach significantly from My growth for low mass galaxies!

but see Brooks+12; Munch+ 13 (extreme ejective SN feedback)
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To have in mind

@ The strongly dissipative baryonic physics i the
dynamics of dark matter in low-mass halos.

@ The ‘gastrophysics’ and DM-baryon coupling should
be understood in order to constrain LCDM at small
scales from observations (this applies to any other
alternative scenario!)

@ Current controversies at small scales: cuspy, too
concentrated (sub)halos, missing satellites and
downsizing could be all related to baryon effects in
low mass halos.
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M,: observations vs simulations

Do the SFR histories of dwarfs imply as

much SNe in the past as in the simulations?
No: Boylan-Kolchin+12; Garrison-Kimmel+1 3.
Yes: Amoriscot13 (Fornax & Sculptor sat’s).

For satellite galaxies: early feedback + ram
pressure + tidal heating from the host -->
shallow core (Arraki+12; Zolotov+12).
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In case the small-scale issues are real: relax assumptions

*Gaussian density perturbations, *scale invariant PS

without a cut-off, *dominate collisionless, non-interacting, vrms=0 particles.
It’s the simplest case from the point of view of cosmic structure formation
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In case the small-scale issues are real: relax assumptions

*Gaussian density perturbations, *scale invariant PS

~withott-a—eut-eff, “dominate collisionless, non-interacting, ¥m==6-particles.
It’s the simplest case from the point of view of cosmic structure formation
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WDM candidates: sterile neutrinos (vMSM model, resonantly produced) and
thermal ~keV particles (e.g., gravitinos)

CDM Colin+ 00, 08; Avila-Reese+0| WDM




WDM candidates: sterile neutrinos (vMSM model, resonantly produced) and
thermal ~keV particles (e.g., gravitinos)

CDM Colin+ 00, 08; Avila-Reese+0l \AVAD 1\

Abundance of subhalos in a MWV halo

9r R, = 0.0 Mpc
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Colin, Avila-Reese & Valenzuela 00




WDM candidates: sterile neutrinos (vMSM model, resonantly produced) and
thermal ~keV particles (e.g., gravitinos)

CDM Colin+ 00, 08; Avila-Reese+0| WDM




The HI velocity (or mass) function of galaxies

Velocity function from HI observations vs
simulations of the local universe Halo mass function
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Challenges for WDM: The good results are for m~1-2 keV, but

* (a) the linear PS of fluctuations at z>2 from the Ly-& forest observations can’t
be reproduced with a cut-off corresponding to these masses ( Viel+ 1 3);
*(b) too few subhalos to host the observed ultrafaint dwarfs (Polisiensky & Ricotti I I)



*Gaussian density perturbations, *scale invariant PS

without a cut-off, *dominate collisionlessrnon-interacting, vims=0 particles.

Self-inte raCting Dark Matter (Spergel & Steinhardt 00; Firmani+00, 01, MNRAS)

Colin+02: Cluster
& galaxy-sized halc
N-body
simulations

Self-interaction-->
gravothermal
processes: core
expansion (but
also core collapse)
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*Gaussian density perturbations, *scale invariant PS

without a cut-off, *dominate collisionlessrnon-interacting, vims=0 particles.

Self-inte raCting Dark Matter (Spergel & Steinhardt 00; Firmani+00, 01, MNRAS)

Colin+02: Cluster & 7om = 0(1/vi0) emiy ! (- muclearscile crosssecton)

galaxy-sized halo 1077 \ o-0.0 Clig, T . a0 Cllg, Fi 705/ iy,

N-body simulations = N f\\ — =%l F QN — — Closn
= 10 N N 1

Soft cores are ? N\ : |

formed (but cuspy also < 10 3 e =3

due to core collapse!), but % E CDM ; E

when 0=const, the 10% (@) 1 3

range of values for N T

producing viable 107 = =1 oy, £

solutions is small N - \ — — Clay - F3

(fine-tuning) EO‘ 101 - \ + \ F
=’ - T | I

A velocity (energy) < 10§ = \ E3

dependent cross- i T core collapseX I

section is viable for 10 ©) 5 (emesedlt 3
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Halo Scaling Laws

* The vdSIDM case is the best one
(soft cores in small halos, almost no
cores in clusters)
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Colin+02, Ap] Halo Scaling Laws
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* The vdSIDM case is the best one
(soft cores in small halos, almost no
cores in clusters)
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¢ The SIDM halos are rounder than
the CDM ones.
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* The subhalo population of the
vdSDM is similar to the CDM one
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‘Hidden dark sectors’ in particle
models: velocity-dependent cross

sections (Ackerman+09; Buckely+10; Feng
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Constraints on collisional DM

DM cores, central spherical halo shapes, near-Maxwellian velocity distributions,
are generic predictions of “astrophysically interesting” SIDM models

1 learf N{E}N Clulgger vdSIDM models motivated by a
new force in the “dark sector”,
Core-collapse e.g. Yukawa-like, (e.g. Feng+09,
Feng+10, Loeb & Weiner 2011)
100 - + 100
'% \
& S
E 0 cre rfs‘\ 10
| NGC 720  Byjidt cluster (Randall+2008)
= Malo shape)
E \ v Peteg+2013 (cluster ellipticity)
2l ~ 1
£
K| 8

subhalo e‘aporation
Gnedin & Os{riker 2001

\ “hard-sphere”

original idea introduced by
1 Spergel & Steinhardt 2000
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EGaussian-densicy-perturbations, *scale invariant PS

without a cut-off, *dominate collisionless, non-interacting, vrms=0 particles.

Avila-Reese, Colin, Piccinelli 03, Ap|
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LCDM makes a strong prediction: large population
of dark subhalos around galaxies (absent in WDM).
How to detect them?

-Flux anomalies (Dalal & Kochanek 02; Metcalf & Amara 12) or
astrometric deviations (Vegetti+/2) in QSO gravitational lenses
produced by subhalos.

© N
! )
-

o

Current detections (e.g., CLASS survey)
are marginal and, if any, imply more
substructure than CDM!  Other sources
(e.g., globular clusters, distant galaxies)
should be taken into account (Xu+10).

- Perturbations of the tidal streams

in the MWV by the subhalos (Carlberg
& Grillmaiur I3)... preliminary evidence. GAIA.

-04 =02 0 0.2 0.4

Arcsec Arcsec




(Sky—p) limits (including astrometric errors)

-Ultra-faint galaxies in the MWV, a o
proof of small-scale structure o

uttra=faint
whgalaxies.

GAIA: Potential to find
them in the multi-space of
stellar coordinates, velocities
and metallicities

102 L

-Triaxiality of the galaxy dark halos i
from stellar and gaseous kinematics
(Integral Field Spectroscopy -MaNGA)

-Power spectrum of gas clouds in H2|
cm line at z>|0 (proto-structures at all
scales)




To take home

@ A better understanding of the gas’rrophyswsand the
baryon-dark matter inferaction is necessary to
acquire before claiming for issues at small scales

o Key tests for LCDM: discovery of the predicted
abundant substructure and the halo friaxiality

@ The dark sector is likely much more complex than
our simple models, with |’rs own (self)interactions and
particle zoo. [Etsmyy SIDM is promising.




